Synlett 2024; 35(09): 967-972
DOI: 10.1055/a-2225-8736
cluster
Chemical Synthesis and Catalysis in Germany

Aromatic Amine Catalysts for the O2-Mediated Cross-Dehydrogenative Phenothiazination Reaction?

Shiny Nandi
,
Alina Paffen
,
Frederic W. Patureau
The DFG-funded transregional collaborative research center SFB/TRR 88 ‘Cooperative effects in homo and heterometallic complexes’ (http://3MET.de) is gratefully acknowledged for financial support.


Abstract

Metal-free aromatic amines have been utilized recently as redox-active catalysts in various oxidative coupling reactions. In this study, we investigated a series of aromatic amines and their potential redox catalytic activity, in particular compared to our previously reported amino-Te(II) catalysts. The O2-mediated cross-dehydrogenative phenothiazination of phenols was utilized as a benchmark test reaction, as well as the O2-mediated cross-dehydrogenative coupling of indoles. We thus identified a proton sponge as an effective aromatic amine redox catalyst. It was moreover found that although the proton sponge displays clear catalytic activity, it is generally less active than previously reported phenotellurazine catalysts. The insights provided by this study should guide future research efforts for the development of innovative redox-catalyzed cross-dehydrogenative coupling reactions.

Supporting Information



Publication History

Received: 04 September 2023

Accepted after revision: 11 December 2023

Accepted Manuscript online:
11 December 2023

Article published online:
09 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Cremer C, Goswami M, Rank CK, de Bruin B, Patureau FW. Angew. Chem. Int. Ed. 2021; 60: 6451
  • 2 Liu S, Klussmann M. Org. Chem. Front. 2021; 8: 2932
  • 3 Xu L, Liu F.-Y, Zhang Q, Chang W.-J, Liu Z.-L, Lv Y, Yu H.-Z, Xu J, Dai J.-J, Xu H.-J.. Nat. Catal. 2021; 4: 71 ; retracted
  • 4 Avanthay M, Bedford RB, Begg CS, Böse D, Clayden J, Davis SA, Eloi J.-C, Goryunov GP, Hartung IV, Heeley J, Khaikin KA, Kitching MO, Krieger J, Kulyabin PS, Lennox AJ. J, Nolla-Saltiel R, Pridmore NE, Rowsell BJ. S, Sparkes HA, Uborsky DV, Voskoboynikov AZ, Walsh MP, Wilkinson HJ, Wilkinson HJ. Nat. Catal. 2021; 4: 994
  • 5 Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Beilstein J. Org. Chem. 2022; 18: 1672
  • 6 Wang Y, Yao J, Li H. Synthesis 2022; 54: 535
  • 7 Hahn PL, Lowe JM, Xu Y, Burns KL, Hilinski MK. ACS Catal. 2022; 12: 4302
  • 8 Kato T, Maruoka K. Angew. Chem. Int. Ed. 2020; 59: 14261
  • 9 Wertz S, Studer A. Green Chem. 2013; 15: 3116
  • 10 Amaya T, Suzuki R, Hirao T. Chem. Commun. 2016; 52: 7790
  • 11 Kato T, Maruoka K. Chem. Commun. 2022; 58: 1021
  • 12 Pierce CJ, Hilinski MK. Org. Lett. 2014; 16: 6504
  • 13 Recupero F, Punta C. Chem. Rev. 2007; 107: 3800
  • 14 Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
  • 15 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
  • 16 Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
  • 17 Platten M, Steckhan E. Chem. Ber. 1984; 117: 1679
  • 18 Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 19 Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
  • 20 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 21 Wang T, Jiao N. J. Am. Chem. Soc. 2013; 135: 11692
  • 22 Gunasekara T, Abramo GP, Hansen A, Neugebauer H, Bursch M, Grimme S, Norton JR. J. Am. Chem. Soc. 2019; 141: 1882
  • 23 Gulzar N, Schweitzer-Chaput B, Klussmann M. Catal. Sci. Technol. 2014; 4: 2778
  • 24 Chen Y, Chen C, Liu Y, Yu L. Chin. Chem. Lett. 2023; 34: 108489
  • 25 Louillat-Habermeyer ML, Jin R, Patureau FW. Angew. Chem. Int. Ed. 2015; 54: 4102
  • 26 Jin R, Patureau FW. Org. Lett. 2016; 18: 4491
  • 27 Goswami M, Konkel A, Rahimi M, Louillat-Habermeyer ML, Kelm H, Jin R, de Bruin B, Patureau FW. Chem. Eur. J. 2018; 24: 11936
  • 28 Patureau FW. ChemCatChem 2019; 11: 5227
  • 29 Zhao Y, Huang B, Yang C, Xia W. Org. Lett. 2016; 18: 3326
  • 30 Zhao Y, Huang B, Yang C, Li B, Gou B, Xia W. ACS Catal. 2017; 7: 2446
  • 31 Tang S, Wang S, Liu Y, Cong H, Lei A. Angew. Chem. Int. Ed. 2018; 57: 4737
  • 32 Liu K, Tang S, Wu T, Wang S, Zou M, Cong H, Lei A. Nat. Commun. 2019; 10: 639
  • 33 Bering L, D’Ottavio L, Sirvinskaite G, Antonchick AP. Chem. Commun. 2018; 54: 13022
  • 34 Jin R, Bub CL, Patureau FW. Org. Lett. 2018; 20: 2884
  • 35 Vemuri PY, Wang Y, Patureau FW. Org. Lett. 2019; 21: 9856
  • 36 Bub CL, Thönnißen V, Patureau FW. Org. Lett. 2020; 22: 9196
  • 37 Benchouaia R, Nandi S, Maurer C, Patureau FW. J. Org. Chem. 2022; 87: 4926
  • 38 Cremer C, Eltester MA, Bourakhouadar H, Atodiresei IL, Patureau FW. Org. Lett. 2021; 23: 3243
  • 39 Li BX, Kim DK, Bloom S, Huang RY.-C, Qiao JX, Ewing WR, Oblinsky DG, Scholes GD, MacMillan DW. C. Nat. Chem. 2021; 13: 902
  • 40 Wu Y.-C, Jiang S.-S, Song R.-J, Li J.-H. Chem. Commun. 2019; 55: 4371
  • 41 Chen S, Li Y.-N, Xiang S.-H, Li S, Tan B. Chem. Commun. 2021; 57: 8512
  • 42 Vemuri PY, Cremer C, Patureau FW. Org. Lett. 2022; 24: 1626
  • 43 Zhang H, Wang S, Wang X, Wang P, Yi H, Zhang H, Lei A. Green Chem. 2022; 24: 147
  • 44 Zhao P, Wang K, Yue Y, Chao J, Ye Y, Tang Q, Liu J. ChemCatChem 2020; 12: 3207
  • 45 Purtsas A, Rosenkranz M, Dmitrieva E, Kataeva O, Knölker H.-J. Chem. Eur. J. 2022; 28: e202104292
  • 46 Chen T, Yu W, Wun CK. T, Wu T.-S, Sun M, Day SJ, Li Z, Yuan B, Wang Y, Li M, Wang Z, Peng Y.-K, Yu W.-Y, Wong K.-Y, Huang B, Liang T, Lo TW. B. J. Am. Chem. Soc. 2023; 145: 8464
  • 47 Morimoto K, Yanase K, Toda K, Takeuchi H, Dohi T, Kita Y. Org. Lett. 2022; 24: 6088
  • 48 Zhang D, Yuan X, Gong C, Zhang X. J. Am. Chem. Soc. 2022; 144: 16184
  • 49 Girón-Elola C, Sasiain I, Sánchez-Fernández R, Pazos E, Correa A. Org. Lett. 2023; 25: 4383
  • 50 Sun J, Liu Z, Jin J. Eur. J. Org. Chem. 2023; 26: e202300081
  • 51 Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
  • 52 Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Chem. Soc. Rev. 2022; 51: 8102
  • 53 Sabet-Sarvestani H, Izadyar M, Eshghi H, Noroozi-Shad N, Bakavoli M. Fuel 2018; 221: 491
  • 54 Rodriguez I, Sastre G, Corma A, Iborra S. J. Catal. 1999; 183: 14
  • 55 Belding L, Stoyanov P, Dudding T. J. Org. Chem. 2016; 81: 553
  • 56 Cremer C, Patureau FW. JACS Au 2022; 2: 1318
  • 57 General Procedure Phenothiazine (0.5 mmol, 1 equiv.), phenol (1.5 mmol, 3 equiv.), K2HPO4 (87 mg, 0.5 mmol, 1 equiv.), and proton sponge cat14 (10.87 mg, 0.05 mmol, 10 mol%) are dissolved in p-xylene (1 mL) in a closed 10 mL vial, and O2 is bubbled through the solution for about 2 min. The reaction mixture is stirred for 3 h at 130 °C. The crude product is purified directly by flash column chromatography yielding the title compound. (For the scale-up experiment at 2 mmol phenothiazine, the reactor vial was 20 mL).