Synlett 2024; 35(10): 1135-1140
DOI: 10.1055/a-2284-5030
cluster
Thieme Chemistry Journals Awardees 2023

Enantioselective Heterogeneous Heck–Matsuda Reaction with Polymer-Supported PyOx Ligands

Christian L. Herrera
,
Rafael L. Oliveira
,
Rodrigo C. Silva
,
Carlos R. D. Correia
,
The authors gratefully acknowledge financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (São Paulo Research Foundation) [2014/25770-6 (to C.R.D.C.), 2015/07773-0 (to R.L.O.), 2021/06661-5 (to J.C.P.), 2023/07466-7 (to R.C.S.)], the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazilian National Council for Scientific and Technological Development) [308540/2021-2 (to J.C.P.)], and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Coordination for the Improvement of Higher Education Personnel) [Finance Code 001 (to C.L.H.)].


Abstract

Carboxymethyl C5-functionalized pyridine-oxazoline (PyOx) ligands are immobilized onto Merrifield and Wang resins utilizing three distinct strategies. The immobilized PyOx ligands are employed in the Pd-catalyzed heterogeneous Heck–Matsuda reaction for the desymmetrization of 3-cyclopenten-1-ol, resulting in the production of 20 examples of aryl-penten-1-ols with yields reaching up to 87%, and enantiomeric ratios ranging between 90:10 and 99:1. These outcomes align with those achieved by the homogeneous counterparts, demonstrating comparable efficiency. Subsequent recycling analysis reveals a progressive decline in catalyst efficiency upon reuse, suggesting the formation of palladium black on the catalyst surface.

Supporting Information



Publication History

Received: 09 February 2024

Accepted after revision: 10 March 2024

Accepted Manuscript online:
10 March 2024

Article published online:
28 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Current addresses: Institute of Low Temperature and Structure Research, Polish Academy of Sciences ul. Okólna 2, 50-422 Wrocław Poland and Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
  • 2 Buskes MJ, Blanco M.-J. Molecules 2020; 25: 3493
  • 3 Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
  • 4 Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
  • 5 Kikukawa K, Matsuda T. Chem. Lett. 1977; 6: 159
  • 6 Taylor JG, Moro AV, Correia CR. D. Eur. J. Org. Chem. 2011; 1403
  • 7 Wen Z, Pintossi D, Nuño M, Noël T. Nat. Commun. 2022; 13: 6147
  • 8 Forni JA, Novaes LF. T, Galaverna R, Pastre JC. Catal. Today 2018; 308: 86
  • 9 Brunner H, Le Cousturier de Courcy N, Genêt J.-P. Tetrahedron Lett. 1999; 40: 4815
  • 10 Brunner H, Le Cousturier de Courcy N, Genêt J.-P. Synlett 2000; 201
  • 11 Ibarguren O, Zakri C, Fouquet E, Felpin F.-X. Tetrahedron Lett. 2009; 50: 5071
  • 12 Oliveira CC, Correia CR. D. Chem. Rec. 2021; 21: 2688
  • 13 Correia CR. D, Oliveira CC, Salles AG, Santos EA. F. Tetrahedron Lett. 2012; 53: 3325
  • 14 Werner EW, Mei T.-S, Burckle AJ, Sigman MS. Science 2012; 338: 1455
  • 15 Herrera CL, Santiago JV, Pastre JC, Correia CR. D. Adv. Synth. Catal. 2022; 364: 1863
  • 16 Li T, Huang B, Wang S, Chen C, Tang L, Lu Q, Lin W. BioResources 2013; 8: 2300
  • 17 Vaino AR, Janda KD. J. Comb. Chem. 2000; 2: 579
  • 18 Wang S.-S. J. Am. Chem. Soc. 1973; 95: 1328
  • 19 Merrifield RB. J. Am. Chem. Soc. 1963; 85: 2149
  • 20 Bibi R, Khan IU, Hassan A. Tetrahedron Lett. 2022; 111: 154204
  • 21 Race NJ, Yuan Q, Sigman MS. Chem. Eur. J. 2019; 25: 512
  • 22 Kocúrik M, Bartáček J, Drabina P, Váňa J, Svoboda J, Husáková L, Finger V, Hympánová M, Sedlák M. J. Org. Chem. 2023; 88: 15189
  • 23 Aranda C, Cornejo A, Fraile JM, García-Verdugo E, Gil MJ, Luis SV, Mayoral JA, Martinez-Merino V, Ochoa Z. Green Chem. 2011; 13: 983
  • 24 Cornejo A, Fraile JM, García JI, García-Verdugo E, Gil MJ, Legarreta G, Luis SV, Martínez-Merino V, Mayoral JA. Org. Lett. 2002; 4: 3927
  • 25 Cornejo A, Martinez-Merino V, Gil MJ, Valerio C, Pinel C. Chem. Lett. 2006; 35: 44
  • 26 Löber S, Gmeiner P. Tetrahedron 2004; 60: 8699
  • 27 Kasaplar P, Ozkal E, Rodríguez-Escrich C, Pericàs MA. Green Chem. 2015; 17: 3122
  • 28 Lundgren S, Lutsenko S, Jönsson C, Moberg C. Org. Lett. 2003; 5: 3663
  • 29 Firth JD, Fairlamb IJ. S. Org. Lett. 2020; 22: 7057
  • 30 The immobilized ligand (0.02 mmol, 0.2 eq.) and the solvent (2 mL) were added to a 4 mL vial. The suspension was stirred for 30 min at room temperature and then Pd(TFA)2 (3.32 mg, 0.01 mmol, 0.1 eq.) was added and the mixture was stirred for 90 min. Next, DTBMP (22.6 mg, 0.11 mmol, 1.1 eq.), cyclopenten-1-ol (1) (15.8 μL, 0.2 mmol, 2 eq.) and the arenediazonium salt 2 were added. After 2 h, the reaction mixture was decanted. The supernatant was removed with a pipette, filtered through a short silica gel pad (eluting with EtOAc), and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (EtOAc/n-hexanes) to provide the desired Heck–Matsuda adduct. For example, compound 3a was obtained as yellow oil in 86% yield and 95:5 er. [α]D 20 +142 (c = 1.1, CH2Cl2). 1H NMR (500 MHz, CDCl3): δ = 7.20–7.07 (m, 2 H), 6.90–6.79 (m, 2 H), 5.94 (tdd, J = 7.2 Hz, 3.6 Hz, 1.8 Hz, 2 H), 4.97–4.86 (m, 1 H), 3.79 (s, 3 H), 3.77–3.71 (m, 1 H), 2.83 (ddd, J = 13.7 Hz, 6.1 Hz, 5.3 Hz, 1 H), 1.62 (br s, 1 H), 1.54 (ddd, J = 13.7 Hz, 6.1 Hz, 5.3 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 158.3, 137.9, 137.4, 134.3, 128.4, 114.1, 77.6, 55.4, 49.2, 44.2. FTIR (ATR): 3337 (br), 2935, 2836, 1516, 1445, 1070, 1000, 815, 748 cm–1.