Planta Med 2010; 76(6): 589-594
DOI: 10.1055/s-0029-1240604
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Comparative Antioxidant, Prooxidant and Cytotoxic Activity of Sigmoidin A and Eriodictyol

Solomon Habtemariam1 , Ermias Dagne2
  • 1Medway School of Science, The University of Greenwich, Chatham Maritime, Kent, U. K.
  • 2Department of Chemistry, Addis Ababa University, Addis Ababa, Ethiopia
Further Information

Publication History

received August 28, 2009 revised –

accepted October 21, 2009

Publication Date:
25 November 2009 (online)

Abstract

Sigmoidin A (SGN) is a prenylated flavanone derivative of eriodictyol (ERD) with reported moderate antioxidant, antimicrobial and anti-inflammatory activity. Since ERD and other structurally similar antioxidant phenolic compounds have been shown to induce prooxidative macromolecular damage and cytotoxicity in cancer cells, the comparative in vitro effects of these structural analogues on cancer cell viability and Cu(II)-dependent DNA damage were studied. In the presence of Cu(II) ions, both SGN and ERD (7.4–236 µM) caused comparable concentration-dependent pBR322 plasmid DNA strand scission. The DNA damage induced by SGN and ERD could be abolished by ROS scavengers, glutathione (GSH) and catalase as well as EDTA and a specific Cu(I) chelator neocuproine. Both ERD and SGN readily reduce Cu(II) to Cu(I) suggesting a prooxidative mechanism of DNA damage. In a cell free system, ERD and SGN did also show comparable radical scavenging activity. SGN was, however, by an order of magnitude more cytotoxic to cancer cells than ERD and this effect was significantly attenuated by GSH suggesting a prooxidative mechanism of cell death. A depletion of intracellular GSH level by SGN in cancer cells is also demonstrated.

References

  • 1 Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention.  J Nutr Biochem. 2007;  18 427-442
  • 2 Chen Y H, Chang F R, Lin Y J, Hsieh P W, Wu M J, Wu Y C. Identification of antioxidants from rhizome of Davallia solida.  Food Chem. 2008;  107 684-691
  • 3 Narváez-Mastache J M, Novillo F, Delgado G. Antioxidant aryl-prenylcoumarin, flavan-3-ols and flavonoids from Eysenhardtia subcoriacea.  Phytochemistry. 2008;  69 451-456
  • 4 Tsimogiannis D I, Oreopoulou V. Free radical scavenging and antioxidant activity of 5,7,3′,4′-hydroxy-substituted flavonoids.  Innov Food Sci Emerging Technol. 2004;  5 523-528
  • 5 Tsimogiannis D I, Oreopoulou V. The contribution of flavonoid C-ring on the DPPH free radical scavenging efficiency. A kinetic approach for the 3′,4′-hydroxy substituted members.  Innov Food Sci Emerging Technol. 2006;  7 140-146
  • 6 Melidou M, Riganakos K, Galaris D. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation.  Free Radic Biol Med. 2005;  39 1591-1600
  • 7 Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells.  Biol Pharm Bull. 2005;  28 253-259
  • 8 Ogata S, Miyake Y, Yamamoto K, Okumura K, Taguchi H. Apoptosis induced by the flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites in HL-60 cells.  Biosci Biotechnol Biochem. 2000;  64 1075-1078
  • 9 Fomum Z T, Ayafor J F, Mbafor J T. Erythrina studies: Part 1. Novel antibacterial flavanones from Erythina sigmoidea.  Tetrahedron Lett. 1983;  24 4127-4130
  • 10 Yenesew A, Induli M, Derese S, Midiwo J O, Heydenreich M, Peter M G, Akala H, Wangui J, Liyala P, Waters N C. Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica.  Phytochemistry. 2004;  65 3029-3032
  • 11 Njamen D, Mbafor J T, Fomum Z T, Kamanyi A, Mbanya J C, Recio M, Giner R M, Máñez S, Ríos J L. Anti-inflammatory activities of two flavanones, sigmoidin A and sigmoidin B, from Erythrina sigmoidea.  Planta Med. 2004;  70 104-107
  • 12 Galati G, Sabzevari O, Wilson J X, O'Brien P J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics.  Toxicology. 2002;  177 91-104
  • 13 Ichimaru M, Moriyasu M, Nishiyama Y, Kato A. Structural elucidation of new flavanones isolated from Erythrina abyssinica.  J Nat Prod. 1996;  59 1113-1116
  • 14 Cui L, Ndinteh D T, Na M, Thuong P T, Silike-Muruumu J, Njamen D, Mbafor J T, Fomum Z T, Ahn J S, Oh W K. Isoprenylated fravonoids from the stembark of Erythrina abyssinica.  J Nat Prod. 2007;  70 1039-1042
  • 15 Habtemariam S. Antioxidant activity of knipholone anthrone.  Food Chem. 2007;  102 1042-1047
  • 16 Habtemariam S, Jackson C. Antioxidant and cytoprotective activity of leaves of Peltiphyllum peltatum (Torr.) Engl.  Food Chem. 2007;  105 498-503
  • 17 Habtemariam S. Activity-guided isolation and identification of free radical-scavenging components from ethanolic extract of boneset (leaves of Eupatorium perfoliatum).  Nat Prod Commun. 2008;  3 1317-1320
  • 18 Habtemariam S, Dagne E. Prooxidant action of knipholone anthrone: copper dependent reactive oxygen species generation and DNA damage.  Food Chem Toxicol. 2009;  47 1490-1494
  • 19 Ito M, Murakami K, Yoshino M. Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation.  Food Chem Toxicol. 2005;  43 461-466
  • 20 Jos A, Cameán M, Pflugmacher S, Segner H. The antioxidant glutathione in the fish cell lines EPC and BCF-2: response to model pro-oxidants as measured by three different fluorescent dyes.  Toxicol In Vitro. 2009;  23 546-553
  • 21 Rahman A, Fazel F, Greensill J, Ainley K, Parish Y C, Hadi S M. Strand scission in DNA induced by dietary flavonoids: role of Cu(I) and oxygen free radicals and biological consequences of scission.  Mol Cell Pharmacol. 1992;  111 3-9
  • 22 Sandur S K, Ichikawa H, Pande M K, Kunnumakkara A B, Sung B, Sethi G, Aggarwal B B. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane).  Free Radic Biol Med. 2007;  43 568-580
  • 23 Seifried H E, Anderson D E, Fisher E I, Milner J A. A review of the interaction among dietary antioxidants and reactive oxygen species.  J Nutr Biochem. 2007;  18 567-579
  • 24 Habtemariam S. Activity-guided isolation and identification of antioxidant components from ethanolic extract of Peltiphyllum peltatum (Torr.) Engl.  Nat Prod Commun. 2008;  3 1321-1324
  • 25 Habtemariam S. Hamamelitannin from Hamamelis virginiana inhibits the tumour necrosis factor-α (TNF)-induced endothelial cell death in vitro.  Toxicon. 2002;  40 83-88
  • 26 Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells.  J Nat Prod. 1997;  60 775-778
  • 27 Habtemariam S. Modulation of tumour necrosis factor-α-induced cytotoxicity by polyphenols.  Phytother Res. 1997;  11 277-280
  • 28 Bhat A S, Azmi S M, Hadi S M. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties.  Toxicol Appl Pharmacol. 2007;  218 249-255
  • 29 Hadi S M, Bhat S H, Azmi A S, Hanif S, Shamim U, Ullah M F. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties.  Sem Cancer Biol. 2007;  17 370-376
  • 30 Song J, Shin S, Ross G. Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system.  Brain Res. 2001;  895 66-72
  • 31 Park S W, Lee S M. Antioxidant and prooxidant properties of ascorbic acid on hepatic dysfunction induced by cold ischemia/reperfusion.  Eur J Pharmacol. 2008;  580 401-406
  • 32 Casciari J, Riordan N, Schmidt T, Meng X, Jackson J, Riordan H. Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fibre in vitro tumours.  Br J Cancer. 2001;  84 1544-1550
  • 33 Chen Q, Espey M G, Krishna M C, Mitchell J B, Corpe C P, Buettner G R, Shacter E, Levini M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues.  Proc Natl Acad Sci USA. 2005;  102 13604-13609
  • 34 Solovieva M E, Soloviev V V, Akatov V S. Vitamin B12b increases the cytotoxicity of short-time exposure to ascorbic acid, inducing oxidative burst and iron-dependent DNA damage.  Eur J Pharmacol. 2007;  566 206-214
  • 35 Kagawa T F, Geierstanger B H, Wang A H, Ho P S. Covalent modification of guanine bases in double-stranded DNA: the 1: 2-AZ-DNA structure of dC(cacacg) in the presence of CuCl2.  J Biol Chem. 1994;  266 20175-20184
  • 36 Zheng L F, Wei Q Y, Cai Y J, Fang J G, Zhou B, Yang L, Liu Z L. DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship.  Free Radic Biol Med. 2006;  41 1807-1816
  • 37 Wätjen W, Weber N, Lou Y J, Wang Z Q, Chovolou Y, Kampkötter A, Kahl R, Proksch P. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells.  Food Chem Toxicol. 2007;  45 119-124
  • 38 Galati G, Moridani M Y, Chan T S, O'Brien P J. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation.  Free Radic Biol Med. 2001;  30 370-382

Dr Solomon Habtemariam

Pharmacognosy Research Laboratories
Medway School of Science
University of Greenwich

Chatham Maritime

Kent ME4 4TB

U. K.

Phone: + 44 20 83 31 83 02

Fax: + 44 20 83 31 98 05

Email: s.habtemariam@gre.ac.uk

    >