Horm Metab Res 2012; 44(11): 804-809
DOI: 10.1055/s-0032-1321877
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Identification of Key Residues for the Binding of Glucagon to the N-Terminal Domain of its Receptor: An Alanine Scan and Modeling Study

M. Prévost
1   Laboratoire de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
,
P. Vertongen
2   Biochemistry Department, Unité de Chimie Biologique et de la Nutrition, Université Libre de Bruxelles, Brussels, Belgium
,
M. Waelbroeck
2   Biochemistry Department, Unité de Chimie Biologique et de la Nutrition, Université Libre de Bruxelles, Brussels, Belgium
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 14. Dezember 2011

accepted 05. Juli 2012

Publikationsdatum:
14. August 2012 (online)

Abstract

Glucagon plays an essential role in the glycemia maintenance during fasting, but also aggravates hyperglycemia in diabetic patients. A series of analogues of glucagon were synthesized replacing each amino acid of the C-terminal region (residues 15–29) with alanine. The residues affecting the binding to the glucagon receptor are found to be located on one face of the glucagon helix. Several 3-dimensional models of the N-terminal domain of the glucagon receptor in complex with its ligand peptide were built and used to analyze the peptide-receptor interface in terms of the nature of the peptide residues and the interactions they form with the receptor. The models suggest that glucagon keeps its native helical structure upon binding, and that a large part of the interface formed with the receptor is hydrophobic. We find that in the C-terminal region, F22, V23, M27, and D15 are the most important residues for peptide binding. They bury a large portion of their solvent accessible surface area and make numerous interactions with the receptor mainly of the hydrophobic type.

 
  • References

  • 1 Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, Drucker DJ. International Union of Pharmacology. XXXV. The Glucagon Receptor Family. Pharmacol Rev 2003; 55: 167-194
  • 2 Abrahamsen N, Nishimura E. Regulation of glucagon and glucagon-like peptide-1 receptor messenger ribonucleic acid expression in cultured rat pancreatic islets by glucose, cyclic adenosine 3′,5′-monophosphate, and glucocorticoids. Endocrinology 1995; 136: 1572-1578
  • 3 Le Marchand SJ, Piston DW. Glucose suppression of glucagon secretion: metabolic and calcium responses from alpha-cells in intact mouse pancreatic islets. J Biol Chem 2010; 285: 14389-14398
  • 4 Piro S, Maniscalchi ET, Monello A, Pandini G, Mascali LG, Rabuazzo AM, Purrello F. Palmitate Affects Insulin Receptor Phosphorylation and Intracellular Insulin Signal in a Pancreatic {alpha}-Cell Line. Endocrinology 2010; 151: 4197-4206
  • 5 Unger RH, Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc Natl Acad Sci USA 2010; 107: 16009-16012
  • 6 Hancock AS, Du A, Liu J, Miller M, May CL. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol Endocrinol 2010; 24: 1605-1614
  • 7 Edgerton DS, Cherrington AD. Glucagon as a critical factor in the pathology of diabetes. Diabetes 2011; 60: 377-380
  • 8 Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 2011; 60: 391-397
  • 9 Svoboda M, Ciccarelli E, Tastenoy M, Robberecht P, Christophe J. A cDNA construct allowing the expression of rat hepatic glucagon receptors. Biochem Biophys Res Commun 1993; 192: 135-142
  • 10 Svoboda M, Ciccarelli E, Tastenoy M, Cauvin A, Stievenart M, Christophe J. Small introns in a hepatic cDNA encoding a new glucagon-like peptide 1-type receptor. Biochem Biophys Res Commun 1993; 191: 479-486
  • 11 Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63: 1256-1272
  • 12 Parthier C, Reedtz-Runge S, Rudolph R, Stubbs MT. Passing the baton in class B GPCRs: peptide hormone activation via helix induction?. Trends Biochem Sci 2009; 34: 303-310
  • 13 Grace CR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE, Vale WW, Riek R. NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci USA 2004; 101: 12836-12841
  • 14 Grace CR, Perrin MH, Gulyas J, DiGruccio MR, Cantle JP, Rivier JE, Vale WW, Riek R. Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. Proc Natl Acad Sci USA 2007; 104: 4858-4863
  • 15 Parthier C, Kleinschmidt M, Neumann P, Rudolph R, Manhart S, Schlenzig D, Fanghanel J, Rahfeld JU, Demuth HU, Stubbs MT. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc Natl Acad Sci USA 2007; 104: 13942-13947
  • 16 Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL, Pereda-Lopez A, Uchic ME, Solomon LR, Lake MR, Walter KA, Hajduk PJ, Olejniczak ET. Solution structure and mutational analysis of Pituitary Adenylate Cyclase-Activating Polypeptide binding to the extracellular domain of PAC1-RS. Proc Natl Acad Sci USA 2007; 104: 7875-7880
  • 17 Pioszak AA, Xu HE. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci USA 2008; 105: 5034-5039
  • 18 Pioszak AA, Parker NR, Suino-Powell K, Xu HE. Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1. J Biol Chem 2008; 283: 32900-32912
  • 19 Runge S, Thogersen H, Madsen K, Lau J, Rudolph R. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. J Biol Chem 2008; 283: 11340-11347
  • 20 ter Haar E, Koth CM, Abdul-Manan N, Swenson L, Coll JT, Lippke JA, Lepre CA, Garcia-Guzman M, Moore JM. Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. Structure 2010; 18: 1083-1093
  • 21 Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R, Reedtz-Runge S. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 2010; 285: 723-730
  • 22 Kumar S, Pioszak A, Zhang C, Swaminathan K, Xu HE. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors. PLoS One 2011; 6: e19682
  • 23 Venneti KC, Hewage CM. Conformational and molecular interaction studies of glucagon-like peptide-2 with its N-terminal extracellular receptor domain. FEBS Lett 2011; 585: 346-352
  • 24 Venneti KC, Malthouse JP, O’Harte FP, Hewage CM. Conformational, receptor interaction and alanine scan studies of glucose-dependent insulinotropic polypeptide. Biochim Biophys Acta 2011; 1814: 882-888
  • 25 Prévost M, Vertongen P, Raussens V, Roberts DJ, Cnudde J, Perret J, Waelbroeck M. Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain. J Biol Chem 2010; 285: 30951-30958
  • 26 Gourlet P, Vandermeers-Piret MC, Rathe J, De Neef P, Cnudde J, Robberecht P, Waelbroeck M. Vasoactive intestinal peptide modification at position 22 allows discrimination between receptor subtypes. Eur J Pharmacol 1998; 348: 95-99
  • 27 de Fontaine S, Dehaye JP, Winand J, Pector JC, Christophe J. Enhanced hepatic adenylate cyclase activity in rats with portacaval shunt. J Surg Res 1987; 42: 198-206
  • 28 Perret J, Van Craenenbroeck M, Langer I, Vertongen P, Gregoire F, Robberecht P, Waelbroeck M. Mutational analysis of the glucagon receptor: similarities with the Vasoactive Intestinal Peptide (VIP)/Pituitary Adenylate Cyclase-Activating Peptide (PACAP)/secretin receptors for recognition of the ligand’s third residue. Biochem J 2002; 362: 389-394
  • 29 Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. Comparative protein structure modeling using Modeller. Curr Protoc Bioinform 2006; Chapter 5: Unit
  • 30 Tina KG, Bhadra R, Srinivasan N. PIC: Protein Interactions Calculator. Nucleic Acids Res 2007; 35: W473-W476
  • 31 Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007; 372: 774-797
  • 32 De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled b-adrenergic receptor. J Biol Chem 1980; 255: 7108-7117
  • 33 Ariens EJ, van Rossum J, Koopman PC. Receptor reserve and threshold phenomena. I. Theory and experiments with autonomic drugs tested on isolated organs. Arch Int Pharmacodyn Ther 1960; 127: 459-478
  • 34 van Rossum J, Ariens EJ. Receptor-reserve and threshold-phenomena. II. Theories on drug-action and a quantitative approach to spare receptors and threshold values. Arch Int Pharmacodyn Ther 1962; 136: 385-413
  • 35 Unson CG, Merrifield RB. Identification of an essential serine residue in glucagon: implication for an active site triad. Proc Natl Acad Sci USA 1994; 91: 454-458
  • 36 Unson CG, Wu CR, Merrifield RB. Roles of aspartic acid 15 and 21 in glucagon action: receptor anchor and surrogates for aspartic acid 9. Biochemistry 1994; 33: 6884-6887
  • 37 Unson CG, Wu CR, Cheung CP, Merrifield RB. Positively charged residues at positions 12, 17, and 18 of glucagon ensure maximum biological potency. J Biol Chem 1998; 273: 10308-10312
  • 38 Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O. Structure-activity studies of glucagon-like peptide-1. J Biol Chem 1994; 269: 6275-6278
  • 39 Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez-Tilve D, Dimarchi R, Tschop MH. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 2009; 5: 749-757
  • 40 Tota MR, Xu L, Sirotina A, Strader CD, Graziano MP. Interaction of [fluorescein-Trp25]glucagon with the human glucagon receptor expressed in Drosophila Schneider 2 cells. J Biol Chem 1995; 270: 26466-26472
  • 41 Day JW, Li P, Patterson JT, Chabenne J, Chabenne MD, Gelfanov VM, Dimarchi RD. Charge inversion at position 68 of the glucagon and glucagon-like peptide-1 receptors supports selectivity in hormone action. J Pept Sci 2011; 17: 218-225
  • 42 Murphy WA, Coy DH, Lance VA. Superactive amidated COOH-terminal glucagon analogues with no methionine or tryptophan. Peptides 1986; 7 (Suppl. 01) 69-74
  • 43 Chabenne JR, DiMarchi MA, Gelfanov VM, Dimarchi RD. Optimization of the native glucagon sequence for medicinal purposes. J Diabetes Sci Technol 2010; 4: 1322-1331