Semin Neurol 2014; 34(03): 341-349
DOI: 10.1055/s-0034-1386771
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Urea Cycle Disorders

Guy Helman
1   Department of Neurology, Children's National Medical Center, Washington, District of Columbia
2   Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia
,
Ileana Pacheco-Colón
2   Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia
3   Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, District of Columbia
,
Andrea L. Gropman
1   Department of Neurology, Children's National Medical Center, Washington, District of Columbia
4   Department of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
5   The George Washington University of the Health Sciences, Washington, District of Columbia
› Author Affiliations
Further Information

Publication History

Publication Date:
05 September 2014 (online)

Abstract

The urea cycle is the primary nitrogen-disposal pathway in humans. It requires the coordinated function of six enzymes and two mitochondrial transporters to catalyze the conversion of a molecule of ammonia, the α-nitrogen of aspartate, and bicarbonate into urea. Whereas ammonia is toxic, urea is relatively inert, soluble in water, and readily excreted by the kidney in the urine. Accumulation of ammonia and other toxic intermediates of the cycle lead to predominantly neurologic sequelae. The disorders may present at any age from the neonatal period to adulthood, with the more severely affected patients presenting earlier in life. Patients are at risk for metabolic decompensation throughout life, often triggered by illness, fasting, surgery and postoperative states, peripartum, stress, and increased exogenous protein load. Here the authors address neurologic presentations of ornithine transcarbamylase deficiency in detail, the most common of the urea cycle disorders, neuropathology, neurophysiology, and our studies in neuroimaging. Special attention to late-onset presentations is given.

 
  • References

  • 1 Häberle J, Boddaert N, Burlina A , et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7: 32
  • 2 Rüegger CM, Lindner M, Ballhausen D , et al. Cross-sectional observational study of 208 patients with non-classical urea cycle disorders. J Inherit Metab Dis 2014; 37 (1) 21-30
  • 3 Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36 (4) 595-612
  • 4 Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol 2002; 67 (4) 259-279
  • 5 Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE. The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 1979; 254 (12) 4982-4992
  • 6 Butterworth RF. Effects of hyperammonaemia on brain function. J Inherit Metab Dis 1998; 21 (Suppl. 01) 6-20
  • 7 Ott P, Clemmesen O, Larsen FS. Cerebral metabolic disturbances in the brain during acute liver failure: from hyperammonemia to energy failure and proteolysis. Neurochem Int 2005; 47 (1-2) 13-18
  • 8 Batshaw ML, Msall M, Beaudet AL, Trojak J. Risk of serious illness in heterozygotes for ornithine transcarbamylase deficiency. J Pediatr 1986; 108 (2) 236-241
  • 9 Bender AS, Norenberg MD. Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem Res 1996; 21 (5) 567-573
  • 10 Norenberg MD. Astrocytic-ammonia interactions in hepatic encephalopathy. Semin Liver Dis 1996; 16 (3) 245-253
  • 11 Takahashi H, Koehler RC, Brusilow SW, Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261 (3 Pt 2) H825-H829
  • 12 Blei AT, Olafsson S, Therrien G, Butterworth RF. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 1994; 19 (6) 1437-1444
  • 13 Butterworth RF, Giguère JF, Michaud J, Lavoie J, Layrargues GP. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol 1987; 6 (1-2) 1-12
  • 14 Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 (Suppl. 01) S3-S12
  • 15 Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Brain Res Rev 2007; 56 (1) 183-197
  • 16 Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 2006; 44 (4) 788-794
  • 17 Albrecht J, Zielińska M, Norenberg MD. Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochem Pharmacol 2010; 80 (9) 1303-1308
  • 18 Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis 2007; 22 (3-4) 199-218
  • 19 Leonard JV, Morris AAM. Urea cycle disorders. Semin Neonatol 2002; 7 (1) 27-35
  • 20 Rose C. Effect of ammonia on astrocytic glutamate uptake/release mechanisms. J Neurochem 2006; 97 (Suppl. 01) 11-15
  • 21 Hyman SL, Coyle JT, Parke JC , et al. Anorexia and altered serotonin metabolism in a patient with argininosuccinic aciduria. J Pediatr 1986; 108 (5 Pt 1) 705-709
  • 22 Lai JC, Cooper AJ. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 1986; 47 (5) 1376-1386
  • 23 Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 2010; 115 (2) 297-313
  • 24 Braissant O. Creatine and guanidinoacetate transport at blood-brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 2012; 35 (4) 655-664
  • 25 Braissant O, Henry H, Béard E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 2011; 40 (5) 1315-1324
  • 26 Alvarez VM, Rama Rao KV, Brahmbhatt M, Norenberg MD. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes. J Neurosci Res 2011; 89 (12) 2028-2040
  • 27 Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun 1992; 184 (2) 746-751
  • 28 Nagasaka H, Komatsu H, Ohura T , et al. Nitric oxide synthesis in ornithine transcarbamylase deficiency: possible involvement of low no synthesis in clinical manifestations of urea cycle defect. J Pediatr 2004; 145 (2) 259-262
  • 29 Wiesinger H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 2001; 64 (4) 365-391
  • 30 Braissant O, Gotoh T, Loup M, Mori M, Bachmann C. Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain. Brain Res Mol Brain Res 2001; 91 (1-2) 189-195
  • 31 Panickar KS, Jayakumar AR, Rao KVR, Norenberg MD. Ammonia-induced activation of p53 in cultured astrocytes: role in cell swelling and glutamate uptake. Neurochem Int 2009; 55 (1-3) 98-105
  • 32 Lichter-Konecki U, Diaz GA, Merritt II JL , et al. Ammonia control in children with urea cycle disorders (UCDs); phase 2 comparison of sodium phenylbutyrate and glycerol phenylbutyrate. Mol Genet Metab 2011; 103 (4) 323-329
  • 33 Lichter-Konecki U, Mangin JM, Gordish-Dressman H, Hoffman EP, Gallo V. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 2008; 56 (4) 365-377
  • 34 Krebs HA, Heinsleit H. Untersuchungen über die Harnstoffbidung im Tierkörper. Z Phys Chem 1932; 210: 33-46
  • 35 Allan JD, Cusworth DC, Dent CE, Wilson VK. A disease, probably hereditary characterised by severe mental deficiency and a constant gross abnormality of aminoacid metabolism. Lancet 1958; 1 (7013) 182-187
  • 36 Bachmann C, Krähenbühl S, Colombo JP, Schubiger G, Jaggi KH, Tönz O. N-acetylglutamate synthetase deficiency: a disorder of ammonia detoxication. N Engl J Med 1981; 304 (9) 543
  • 37 Summar ML, Koelker S, Freedenberg D , et al; European Registry and Network for Intoxication Type Metabolic Diseases (E-IMD). Electronic address: http://www.e-imd.org/en/index.phtml ; Members of the Urea Cycle Disorders Consortium (UCDC). Electronic address: http://rarediseasesnetwork.epi.usf.edu/ucdc/ The incidence of urea cycle disorders. Mol Genet Metab 2013; 110 (1-2) 179-180
  • 38 Tuchman M. The clinical, biochemical, and molecular spectrum of ornithine transcarbamylase deficiency. J Lab Clin Med 1992; 120 (6) 836-850
  • 39 Görker I, Tüzün U. Autistic-like findings associated with a urea cycle disorder in a 4-year-old girl. J Psychiatry Neurosci 2005; 30 (2) 133-135
  • 40 Schiff M, Benoist J-F, Aïssaoui S , et al. Should metabolic diseases be systematically screened in nonsyndromic autism spectrum disorders?. PLoS ONE 2011; 6 (7) e21932
  • 41 Gropman A. Brain imaging in urea cycle disorders. Mol Genet Metab 2010; 100 (Suppl. 01) S20-S30
  • 42 Ah Mew N, Krivitzky L, McCarter R, Batshaw M, Tuchman M ; Urea Cycle Disorders Consortium of the Rare Diseases Clinical Research Network. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr 2013; 162 (2) 324-329 , e1
  • 43 McCullough BA, Yudkoff M, Batshaw ML, Wilson JM, Raper SE, Tuchman M. Genotype spectrum of ornithine transcarbamylase deficiency: correlation with the clinical and biochemical phenotype. Am J Med Genet 2000; 93 (4) 313-319
  • 44 Kwon JM, D'Aco KE. Clinical neurogenetics: neurologic presentations of metabolic disorders. Neurol Clin 2013; 31 (4) 1031-1050
  • 45 Summar M. Current strategies for the management of neonatal urea cycle disorders. J Pediatr 2001; 138 (1, Suppl) S30-S39
  • 46 Batshaw ML, Brusilow SW. Treatment of hyperammonemic coma caused by inborn errors of urea synthesis. J Pediatr 1980; 97 (6) 893-900
  • 47 Batshaw ML, Roan Y, Jung AL, Rosenberg LA, Brusilow SW. Cerebral dysfunction in asymptomatic carriers of ornithine transcarbamylase deficiency. N Engl J Med 1980; 302 (9) 482-485
  • 48 Felig DM, Brusilow SW, Boyer JL. Hyperammonemic coma due to parenteral nutrition in a woman with heterozygous ornithine transcarbamylase deficiency. Gastroenterology 1995; 109 (1) 282-284
  • 49 Gaspari R, Arcangeli A, Mensi S , et al. Late-onset presentation of ornithine transcarbamylase deficiency in a young woman with hyperammonemic coma. Ann Emerg Med 2003; 41 (1) 104-109
  • 50 Gilchrist JM, Coleman RA. Ornithine transcarbamylase deficiency: adult onset of severe symptoms. Ann Intern Med 1987; 106 (4) 556-558
  • 51 Mizoguchi K, Sukehiro K, Ogata M , et al. A case of ornithine transcarbamylase deficiency with acute and late onset simulating Reye's syndrome in an adult male. Kurume Med J 1990; 37 (2) 105-109
  • 52 Rimbaux S, Hommet C, Perrier D , et al. Adult onset ornithine transcarbamylase deficiency: an unusual cause of semantic disorders. J Neurol Neurosurg Psychiatry 2004; 75 (7) 1073-1075
  • 53 Smith W, Kishnani PS, Lee B , et al. Urea cycle disorders: clinical presentation outside the newborn period. Crit Care Clin 2005; 21 (4, Suppl) S9-S17
  • 54 Hu WT, Kantarci OH, Merritt II JL , et al. Ornithine transcarbamylase deficiency presenting as encephalopathy during adulthood following bariatric surgery. Arch Neurol 2007; 64 (1) 126-128
  • 55 Peterson DE. Acute postpartum mental status change and coma caused by previously undiagnosed ornithine transcarbamylase deficiency. Obstet Gynecol 2003; 102 (5 Pt 2) 1212-1215
  • 56 Arn PH, Hauser ER, Thomas GH, Herman G, Hess D, Brusilow SW. Hyperammonemia in women with a mutation at the ornithine carbamoyltransferase locus. A cause of postpartum coma. N Engl J Med 1990; 322 (23) 1652-1655
  • 57 Cordero DR, Baker J, Dorinzi D, Toffle R. Ornithine transcarbamylase deficiency in pregnancy. J Inherit Metab Dis 2005; 28 (2) 237-240
  • 58 Enns GM, O'Brien WE, Kobayashi K, Shinzawa H, Pellegrino JE. Postpartum “psychosis” in mild argininosuccinate synthetase deficiency. Obstet Gynecol 2005; 105 (5 Pt 2) 1244-1246
  • 59 Klein OD, Kostiner DR, Weisiger K , et al. Acute fatal presentation of ornithine transcarbamylase deficiency in a previously healthy male. Hepatol Int 2008; 2 (3) 390-394
  • 60 Trivedi M, Zafar S, Spalding MJ, Jonnalagadda S. Ornithine transcarbamylase deficiency unmasked because of gastrointestinal bleeding. J Clin Gastroenterol 2001; 32 (4) 340-343
  • 61 Mathias RS, Kostiner D, Packman S. Hyperammonemia in urea cycle disorders: role of the nephrologist. Am J Kidney Dis 2001; 37 (5) 1069-1080
  • 62 Fenves A, Boland CR, Lepe R, Rivera-Torres P, Spechler SJ. Fatal hyperammonemic encephalopathy after gastric bypass surgery. Am J Med 2008; 121 (1) e1-e2
  • 63 Ben-Ari Z, Dalal A, Morry A , et al. Adult-onset ornithine transcarbamylase (OTC) deficiency unmasked by the Atkins' diet. J Hepatol 2010; 52 (2) 292-295
  • 64 Lipskind S, Loanzon S, Simi E, Ouyang DW. Hyperammonemic coma in an ornithine transcarbamylase mutation carrier following antepartum corticosteroids. J Perinatol 2011; 31 (10) 682-684
  • 65 Henriques M, Diogo L, Garcia P, Pratas J, Simões M, Grazina M. Mitochondrial DNA 8993T>G mutation in a child with ornithine transcarbamylase deficiency and leigh syndrome: an unexpected association. J Child Neurol 2012; 27 (8) 1059-1061
  • 66 Chiong MA, Bennetts BH, Strasser SI, Wilcken B. Fatal late-onset ornithine transcarbamylase deficiency after coronary artery bypass surgery. Med J Aust 2007; 186 (8) 418-419
  • 67 Sinclair M, Ket S, Testro A, Gow PJ, Angus PW. Acute hepatic decompensation precipitated by pregnancy-related catabolic stress: a rare mimic of acute liver failure. Obstet Gynecol 2014; 123 (2 Pt 2) (Suppl. 02) 480-483
  • 68 Celik O, Buyuktas D, Aydin A, Acbay O. Ornithine transcarbamylase deficiency diagnosed in pregnancy. Gynecol Endocrinol 2011; 27 (12) 1052-1054
  • 69 Fassier T, Guffon N, Acquaviva C, D'Amato T, Durand DV, Domenech P. Misdiagnosed postpartum psychosis revealing a late-onset urea cycle disorder. Am J Psychiatry 2011; 168 (6) 576-580
  • 70 Legras A, Labarthe F, Maillot F, Garrigue MA, Kouatchet A, Ogier de Baulny H. Late diagnosis of ornithine transcarbamylase defect in three related female patients: polymorphic presentations. Crit Care Med 2002; 30 (1) 241-244
  • 71 Summar ML, Barr F, Dawling S , et al. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin 2005; 21 (4, Suppl) S1-S8
  • 72 Shih VE, Efron ML, Moser HW. Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am J Dis Child 1969; 117 (1) 83-92
  • 73 Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP. Hyperargininämie mit Arginasedefekt. Eine neue familiäre Stoffwechselstörung. I. Klinische Befunde (in German). Z Kinderheilkd 1970; 107 (4) 298-312
  • 74 Caldovic L, Morizono H, Gracia Panglao M , et al. Cloning and expression of the human N-acetylglutamate synthase gene. Biochem Biophys Res Commun 2002; 299 (4) 581-586
  • 75 Camacho JA, Obie C, Biery B , et al. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 1999; 22 (2) 151-158
  • 76 Dizikes GJ, Grody WW, Kern RM, Cederbaum SD. Isolation of human liver arginase cDNA and demonstration of nonhomology between the two human arginase genes. Biochem Biophys Res Commun 1986; 141 (1) 53-59
  • 77 Haraguchi Y, Takiguchi M, Amaya Y, Kawamoto S, Matsuda I, Mori M. Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci U S A 1987; 84 (2) 412-415
  • 78 Haraguchi Y, Uchino T, Takiguchi M, Endo F, Mori M, Matsuda I. Cloning and sequence of a cDNA encoding human carbamyl phosphate synthetase I: molecular analysis of hyperammonemia. Gene 1991; 107 (2) 335-340
  • 79 Horwich AL, Fenton WA, Williams KR , et al. Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science 1984; 224 (4653) 1068-1074
  • 80 Kobayashi K, Sinasac DS, Iijima M , et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 1999; 22 (2) 159-163
  • 81 O'Brien WE, McInnes R, Kalumuck K, Adcock M. Cloning and sequence analysis of cDNA for human argininosuccinate lyase. Proc Natl Acad Sci U S A 1986; 83 (19) 7211-7215
  • 82 Su TS, Bock HG, O'Brien WE, Beaudet AL. Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line. J Biol Chem 1981; 256 (22) 11826-11831
  • 83 Donn SM, Swartz RD, Thoene JG. Comparison of exchange transfusion, peritoneal dialysis, and hemodialysis for the treatment of hyperammonemia in an anuric newborn infant. J Pediatr 1979; 95 (1) 67-70
  • 84 Hommes FA, De Groot CJ, Wilmink CW, Jonxis JH. Carbamylphosphate synthetase deficiency in an infant with severe cerebral damage. Arch Dis Child 1969; 44 (238) 688-693
  • 85 Matsuda I, Anakura M, Arashima S, Saito Y, Oka Y. A variant form of citrullinemia. J Pediatr 1976; 88 (5) 824-826
  • 86 McMurray WC, Rathbun JC, Mohyuddin F, Koegler SJ. Citrullinuria. Pediatrics 1963; 32: 347-357
  • 87 Russell A, Levin B, Oberholzer VG, Sinclair L. Hyperammonaemia. A new instance of an inborn enzymatic defect of the biosynthesis of urea. Lancet 1962; 2 (7258) 699-700
  • 88 Pfeuffer J, Tkác I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson 1999; 141 (1) 104-120
  • 89 Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 1993; 33 (1) 77-81
  • 90 Takanashi J, Inoue K, Tomita M , et al. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology 2002; 58 (2) 237-241
  • 91 Gropman AL, Fricke ST, Seltzer RR , et al; Urea Cycle Disorders Consortium. 1H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab 2008; 95 (1-2) 21-30
  • 92 Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson 2011; 213 (2) 560-570
  • 93 Gropman AL, Gertz B, Shattuck K , et al. Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with partial ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 2010; 31 (9) 1719-1723
  • 94 Gropman AL, Prust M, Breeden A, Fricke S, VanMeter J. Urea cycle defects and hyperammonemia: effects on functional imaging. Metab Brain Dis 2013; 28 (2) 269-275
  • 95 Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 1936; 22 (4) 210-216
  • 96 Biswal BB, Mennes M, Zuo X-N , et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010; 107 (10) 4734-4739
  • 97 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1-38
  • 98 Takanashi J, Barkovich AJ, Cheng SF , et al. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 2003; 24 (6) 1184-1187
  • 99 Majoie CBLM, Mourmans JM, Akkerman EM, Duran M, Poll-The BT. Neonatal citrullinemia: comparison of conventional MR, diffusion-weighted, and diffusion tensor findings. AJNR Am J Neuroradiol 2004; 25 (1) 32-35
  • 100 Gunz AC, Choong K, Potter M, Miller E. Magnetic resonance imaging findings and neurodevelopmental outcomes in neonates with urea-cycle defects. Int Med Case Rep J 2013; 6: 41-48