Semin Liver Dis 2016; 36(03): 200-215
DOI: 10.1055/s-0036-1584322
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Immunobiology of Immunoglobulin G4

Laura C. Lighaam
1   Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
2   Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
,
Theo Rispens
1   Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
2   Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
28 July 2016 (online)

Abstract

Human immunoglobulin G4 (IgG4) antibodies are in many ways unusual. In this review, an overview is given of the structural and functional aspects of IgG4 antibodies, the consequences of IgG4 antibody formation in various disease settings, and the factors involved in the regulation of IgG4 responses. Unlike most IgG antibodies, IgG4 antibodies exist in a dynamic equilibrium with other IgG4 antibodies, continuously exchanging half-molecules resulting in effectively monovalent antibodies that cannot cross-link. Together with the low affinities to C1q and most Fc receptors, and a generally high affinity for antigen, IgG4 antibodies appear to be nature's way of producing “blocking antibodies.” On the one hand, IgG4 may contribute to tolerance to allergens, presumably via competition with IgE. Also, IgG4 immune responses to filarial parasites might prevent excessive immune reactions during such infections. On the other hand, IgG4 autoantibodies may be pathogenic, simply because they inhibit the function of their target molecules. Furthermore, IgG4 antibodies to biologicals may result in secondary loss of response. In addition, IgG4 has been implicated to impair humoral immunity to tumors. The role of high IgG4 serum levels in IgG4-related disease has not yet been established. Regulation of IgG4 responses is most likely a multifactorial process, which in vivo requires prolonged or repeated challenge with antigen, and is associated with regulatory T cells, T helper 2 cells, interleukin- (IL-) 4, and IL-10. In vitro, cytokines like IL-4, IL-13, IL-10, and IL-21 have been shown to differentially influence IgG4 production. The properties of IgG4 B cells have now started to be elucidated, and may provide additional clues to explain the unusual dynamics of IgG4-antibody responses.

 
  • References

  • 1 Schur PH. IgG subclasses. A historical perspective. Monogr Allergy 1988; 23: 1-11
  • 2 Ishizaka T, Ishizaka K, Salmon S, Fudenberg H. Biologic activities of aggregated gamma-globulin. 8. Aggregated immunoglobulins of different classes. J Immunol 1967; 99 (1) 82-91
  • 3 Brito-Zerón P, Ramos-Casals M, Bosch X, Stone JH. The clinical spectrum of IgG4-related disease. Autoimmun Rev 2014; 13 (12) 1203-1210
  • 4 Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5: 520
  • 5 Hamilton RG. Human IgG subclass measurements in the clinical laboratory. Clin Chem 1987; 33 (10) 1707-1725
  • 6 Roux KH, Strelets L, Michaelsen TE. Flexibility of human IgG subclasses. J Immunol 1997; 159 (7) 3372-3382
  • 7 Dillon TM, Ricci MS, Vezina C , et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 2008; 283 (23) 16206-16215
  • 8 Carrasco B, Garcia de la Torre J, Davis KG , et al. Crystallohydrodynamics for solving the hydration problem for multi-domain proteins: open physiological conformations for human IgG. Biophys Chem 2001; 93 (2–3): 181-196
  • 9 Lu Y, Harding SE, Michaelsen TE , et al. Solution conformation of wild-type and mutant IgG3 and IgG4 immunoglobulins using crystallohydrodynamics: possible implications for complement activation. Biophys J 2007; 93 (11) 3733-3744
  • 10 Abe Y, Gor J, Bracewell DG, Perkins SJ, Dalby PA. Masking of the Fc region in human IgG4 by constrained X-ray scattering modelling: implications for antibody function and therapy. Biochem J 2010; 432 (1) 101-111
  • 11 Petersen JG, Dorrington KJ. An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G. J Biol Chem 1974; 249 (17) 5633-5641
  • 12 Angal S, King DJ, Bodmer MW , et al. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 1993; 30 (1) 105-108
  • 13 Schuurman J, Perdok GJ, Gorter AD, Aalberse RC. The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 2001; 38 (1) 1-8
  • 14 Chivers PT, Prehoda KE, Raines RT. The CXXC motif: a rheostat in the active site. Biochemistry 1997; 36 (14) 4061-4066
  • 15 Bloom JW, Madanat MS, Marriott D, Wong T, Chan SY. Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci 1997; 6 (2) 407-415
  • 16 Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC. Mechanism of immunoglobulin G4 Fab-arm exchange. J Am Chem Soc 2011; 133 (26) 10302-10311
  • 17 Aalberse RC, van der Gaag R, van Leeuwen J. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol 1983; 130 (2) 722-726
  • 18 van der Zee JS, van Swieten P, Aalberse RC. Serologic aspects of IgG4 antibodies. II. IgG4 antibodies form small, nonprecipitating immune complexes due to functional monovalency. J Immunol 1986; 137 (11) 3566-3571
  • 19 Schuurman J, Van Ree R, Perdok GJ, Van Doorn HR, Tan KY, Aalberse RC. Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 1999; 97 (4) 693-698
  • 20 van der Neut Kolfschoten M, Schuurman J, Losen M , et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007; 317 (5844) 1554-1557
  • 21 Labrijn AF, Buijsse AO, van den Bremer ET , et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009; 27 (8) 767-771
  • 22 Rispens T, Davies AM, Ooijevaar-de Heer P , et al. Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange. J Biol Chem 2014; 289 (9) 6098-6109
  • 23 Stubenrauch K, Wessels U, Regula JT, Kettenberger H, Schleypen J, Kohnert U. Impact of molecular processing in the hinge region of therapeutic IgG4 antibodies on disposition profiles in cynomolgus monkeys. Drug Metab Dispos 2010; 38 (1) 84-91
  • 24 Peters SJ, Smales CM, Henry AJ, Stephens PE, West S, Humphreys DP. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability. J Biol Chem 2012; 287 (29) 24525-24533
  • 25 Silva JP, Vetterlein O, Jose J, Peters S, Kirby H. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem 2015; 290 (9) 5462-5469
  • 26 Lewis KB, Meengs B, Bondensgaard K , et al. Comparison of the ability of wild type and stabilized human IgG(4) to undergo Fab arm exchange with endogenous IgG(4)in vitro and in vivo. Mol Immunol 2009; 46 (16) 3488-3494
  • 27 Yang X, Wang F, Zhang Y , et al. Comprehensive analysis of the therapeutic IgG4 antibody pembrolizumab: hinge modification blocks half molecule exchange in vitro and in vivo. J Pharm Sci 2015; 104 (12) 4002-4014
  • 28 Labrijn AF, Rispens T, Meesters J , et al. Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3-CH3 interaction strength. J Immunol 2011; 187 (6) 3238-3246
  • 29 Rose RJ, Labrijn AF, van den Bremer ET , et al. Quantitative analysis of the interaction strength and dynamics of human IgG4 half molecules by native mass spectrometry. Structure 2011; 19 (9) 1274-1282
  • 30 Davies AM, Rispens T, den Bleker TH , et al. Crystal structure of the human IgG4 C(H)3 dimer reveals the role of Arg409 in the mechanism of Fab-arm exchange. Mol Immunol 2013; 54 (1) 1-7
  • 31 Davies AM, Rispens T, Ooijevaar-de HP , et al. Structural determinants of unique properties of human IgG4-Fc. J Mol Biol 2014; 426 (3) 630-644
  • 32 Debaene F, Wagner-Rousset E, Colas O , et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and “bispecific” monoclonal antibody formation. Anal Chem 2013; 85 (20) 9785-9792
  • 33 Hansen K, Ruttekolk IR, Glauner H, Becker F, Brock R, Hannus S. The in vitro biological activity of the HLA-DR-binding clinical IgG4 antibody 1D09C3 is a consequence of the disruption of cell aggregates and can be abrogated by Fab arm exchange. Mol Immunol 2009; 46 (16) 3269-3277
  • 34 Rispens T, den Bleker TH, Aalberse RC. Hybrid IgG4/IgG4 Fc antibodies form upon ‘Fab-arm’ exchange as demonstrated by SDS-PAGE or size-exclusion chromatography. Mol Immunol 2010; 47 (7–8): 1592-1594
  • 35 Shapiro RI, Plavina T, Schlain BR , et al. Development and validation of immunoassays to quantify the half-antibody exchange of an IgG4 antibody, natalizumab (Tysabri®) with endogenous IgG4. J Pharm Biomed Anal 2011; 55 (1) 168-175
  • 36 Young E, Lock E, Ward DG, Cook A, Harding S, Wallis GL. Estimation of polyclonal IgG4 hybrids in normal human serum. Immunology 2014; 142 (3) 406-413
  • 37 Aalberse RC, Stapel SO, Schuurman J, Rispens T. Immunoglobulin G4: an odd antibody. Clin Exp Allergy 2009; 39 (4) 469-477
  • 38 Rispens T, Ooievaar-De Heer P, Vermeulen E, Schuurman J, van der Neut Kolfschoten M, Aalberse RC. Human IgG4 binds to IgG4 and conformationally altered IgG1 via Fc-Fc interactions. J Immunol 2009; 182 (7) 4275-4281
  • 39 Zack DJ, Stempniak M, Wong AL, Weisbart RH. Localization of an Fc-binding reactivity to the constant region of human IgG4. Implications for the pathogenesis of rheumatoid arthritis. J Immunol 1995; 155 (10) 5057-5063
  • 40 Kawa S, Kitahara K, Hamano H , et al. A novel immunoglobulin-immunoglobulin interaction in autoimmunity. PLoS ONE 2008; 3 (2) e1637
  • 41 Cohen PL, Cheek RL, Hadler JA, Yount WJ, Eisenberg RA. The subclass distribution of human IgG rheumatoid factor. J Immunol 1987; 139 (5) 1466-1471
  • 42 Ito T, Kitahara K, Umemura T , et al. A novel heterophilic antibody interaction involves IgG4. Scand J Immunol 2010; 71 (2) 109-114
  • 43 Rispens T, Himly M, Ooievaar-De Heer P, den Bleker TH, Aalberse RC. Traces of pFc' in IVIG interact with human IgG Fc domains and counteract aggregation. Eur J Pharm Sci 2010; 40 (1) 62-68
  • 44 Rispens T, Meesters J, den Bleker TH , et al. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intra-chain hinge isomer. Mol Immunol 2013; 53 (1–2) 35-42
  • 45 Detlefsen S, Bräsen JH, Zamboni G, Capelli P, Klöppel G. Deposition of complement C3c, immunoglobulin (Ig)G4 and IgG at the basement membrane of pancreatic ducts and acini in autoimmune pancreatitis. Histopathology 2010; 57 (6) 825-835
  • 46 Ma H, Sandor DG, Beck Jr LH. The role of complement in membranous nephropathy. Semin Nephrol 2013; 33 (6) 531-542
  • 47 Rispens T, Leeuwen Av, Vennegoor A , et al. Measurement of serum levels of natalizumab, an immunoglobulin G4 therapeutic monoclonal antibody. Anal Biochem 2011; 411 (2) 271-276
  • 48 van Schie KA, Wolbink GJ, Rispens T. Cross-reactive and pre-existing antibodies to therapeutic antibodies—effects on treatment and immunogenicity. MAbs 2015; 7 (4) 662-671
  • 49 Hennig C, Rink L, Kirchner H. Evidence for presence of IgG4 anti-immunoglobulin autoantibodies in all human beings. Lancet 2000; 355 (9215) 1617-1618
  • 50 Kanmert D, Kastbom A, Almroth G, Skogh T, Enander K, Wetterö J. IgG rheumatoid factors against the four human Fc-gamma subclasses in early rheumatoid arthritis (the Swedish TIRA project). Scand J Immunol 2012; 75 (1) 115-119
  • 51 Sarma JV, Ward PA. The complement system. Cell Tissue Res 2011; 343 (1) 227-235
  • 52 Bindon CI, Hale G, Brüggemann M, Waldmann H. Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J Exp Med 1988; 168 (1) 127-142
  • 53 van der Zee JS, van Swieten P, Aalberse RC. Inhibition of complement activation by IgG4 antibodies. Clin Exp Immunol 1986; 64 (2) 415-422
  • 54 Schumaker VN, Calcott MA, Spiegelberg HL, Müller-Eberhard HJ. Ultracentifuge studies of the binding of IgG of different subclasses to the Clq subunit of the first component of complement. Biochemistry 1976; 15 (23) 5175-5181
  • 55 Tao MH, Smith RI, Morrison SL. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med 1993; 178 (2) 661-667
  • 56 Idusogie EE, Presta LG, Gazzano-Santoro H , et al. Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J Immunol 2000; 164 (8) 4178-4184
  • 57 Morgan A, Jones ND, Nesbitt AM, Chaplin L, Bodmer MW, Emtage JS. The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc gamma RI and Fc gamma RIII binding. Immunology 1995; 86 (2) 319-324
  • 58 Brekke OH, Michaelsen TE, Aase A, Sandin RH, Sandlie I. Human IgG isotype-specific amino acid residues affecting complement-mediated cell lysis and phagocytosis. Eur J Immunol 1994; 24 (10) 2542-2547
  • 59 Isenman DE, Dorrington KJ, Painter RH. The structure and function of immunoglobulin domains. II. The importance of interchain disulfide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement. J Immunol 1975; 114 (6) 1726-1729
  • 60 Smith RI, Coloma MJ, Morrison SL. Addition of a mu-tailpiece to IgG results in polymeric antibodies with enhanced effector functions including complement-mediated cytolysis by IgG4. J Immunol 1995; 154 (5) 2226-2236
  • 61 Diebolder CA, Beurskens FJ, de Jong RN , et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014; 343 (6176) 1260-1263
  • 62 Huizinga TW, Kerst M, Nuyens JH , et al. Binding characteristics of dimeric IgG subclass complexes to human neutrophils. J Immunol 1989; 142 (7) 2359-2364
  • 63 Bruhns P, Iannascoli B, England P , et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 2009; 113 (16) 3716-3725
  • 64 Ramsland PA, Farrugia W, Bradford TM , et al. Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes. J Immunol 2011; 187 (6) 3208-3217
  • 65 Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 2000; 406 (6793) 267-273
  • 66 Lund J, Winter G, Jones PT , et al. Human Fc gamma RI and Fc gamma RII interact with distinct but overlapping sites on human IgG. J Immunol 1991; 147 (8) 2657-2662
  • 67 Shields RL, Namenuk AK, Hong K , et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 2001; 276 (9) 6591-6604
  • 68 Armour KL, Clark MR, Hadley AG, Williamson LM. Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities. Eur J Immunol 1999; 29 (8) 2613-2624
  • 69 Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD. The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 2001; 276 (19) 16469-16477
  • 70 Brüggemann M, Williams GT, Bindon CI , et al. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 1987; 166 (5) 1351-1361
  • 71 Steplewski Z, Sun LK, Shearman CW, Ghrayeb J, Daddona P, Koprowski H. Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc Natl Acad Sci U S A 1988; 85 (13) 4852-4856
  • 72 Shaw DR, Khazaeli MB, LoBuglio AF. Mouse/human chimeric antibodies to a tumor-associated antigen: biologic activity of the four human IgG subclasses. J Natl Cancer Inst 1988; 80 (19) 1553-1559
  • 73 Karagiannis P, Gilbert AE, Josephs DH , et al. IgG4 subclass antibodies impair antitumor immunity in melanoma. J Clin Invest 2013; 123 (4) 1457-1474
  • 74 Guo J, Jaume JC, Rapoport B, McLachlan SM. Recombinant thyroid peroxidase-specific Fab converted to immunoglobulin G (IgG) molecules: evidence for thyroid cell damage by IgG1, but not IgG4, autoantibodies. J Clin Endocrinol Metab 1997; 82 (3) 925-931
  • 75 Stein R, Qu Z, Chen S, Solis D, Hansen HJ, Goldenberg DM. Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood 2006; 108 (8) 2736-2744
  • 76 Khalife J, Dunne DW, Richardson BA , et al. Functional role of human IgG subclasses in eosinophil-mediated killing of schistosomula of Schistosoma mansoni. J Immunol 1989; 142 (12) 4422-4427
  • 77 Greenwood J, Clark M, Waldmann H. Structural motifs involved in human IgG antibody effector functions. Eur J Immunol 1993; 23 (5) 1098-1104
  • 78 Isaacs JD, Wing MG, Greenwood JD, Hazleman BL, Hale G, Waldmann H. A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin Exp Immunol 1996; 106 (3) 427-433
  • 79 Holland M, Hewins P, Goodall M, Adu D, Jefferis R, Savage CO. Anti-neutrophil cytoplasm antibody IgG subclasses in Wegener's granulomatosis: a possible pathogenic role for the IgG4 subclass. Clin Exp Immunol 2004; 138 (1) 183-192
  • 80 Hussain A, Pankhurst T, Goodall M , et al. Chimeric IgG4 PR3-ANCA induces selective inflammatory responses from neutrophils through engagement of Fcgamma receptors. Immunology 2009; 128 (2) 236-244
  • 81 Pankhurst T, Nash G, Williams J, Colman R, Hussain A, Savage C. Immunoglobulin subclass determines ability of immunoglobulin (Ig)G to capture and activate neutrophils presented as normal human IgG or disease-associated anti-neutrophil cytoplasm antibody (ANCA)-IgG. Clin Exp Immunol 2011; 164 (2) 218-226
  • 82 Devey ME, Bleasdale KM, French MA, Harrison G. The IgG4 subclass is associated with a low affinity antibody response to tetanus toxoid in man. Immunology 1985; 55 (3) 565-567
  • 83 James LK, Bowen H, Calvert RA , et al. Allergen specificity of IgG(4)-expressing B cells in patients with grass pollen allergy undergoing immunotherapy. J Allergy Clin Immunol 2012; 130 (3) 663-670.e3
  • 84 van Schouwenburg PA, Kruithof S, Votsmeier C , et al. Functional analysis of the anti-adalimumab response using patient-derived monoclonal antibodies. J Biol Chem 2014; 289 (50) 34482-34488
  • 85 Devey ME, Lee SR, Richards D, Kemeny DM. Serial studies on the functional affinity and heterogeneity of antibodies of different IgG subclasses to phospholipase A2 produced in response to bee-venom immunotherapy. J Allergy Clin Immunol 1989; 84 (3) 326-330
  • 86 Hofbauer CJ, Whelan SF, Hirschler M , et al. Affinity of FVIII-specific antibodies reveals major differences between neutralizing and nonneutralizing antibodies in humans. Blood 2015; 125 (7) 1180-1188
  • 87 Devey ME, Bleasdale-Barr KM, Bird P, Amlot PL. Antibodies of different human IgG subclasses show distinct patterns of affinity maturation after immunization with keyhole limpet haemocyanin. Immunology 1990; 70 (2) 168-174
  • 88 Thorpe SJ, Turner C, Heath A , et al. Clonal analysis of a human antimouse antibody (HAMA) response. Scand J Immunol 2003; 57 (1) 85-92
  • 89 Aalberse RC, Dieges PH, Knul-Bretlova V, Vooren P, Aalbers M, van Leeuwen J. IgG4 as a blocking antibody. Clin Rev Allergy 1983; 1 (2) 289-302
  • 90 Ejrnaes AM, Bodtger U, Larsen JN, Svenson M. The blocking activity of birch pollen-specific immunotherapy-induced IgG4 is not qualitatively superior to that of other IgG subclasses. Mol Immunol 2004; 41 (5) 471-478
  • 91 Wang Y, Jackson KJ, Chen Z , et al. IgE sequences in individuals living in an area of endemic parasitism show little mutational evidence of antigen selection. Scand J Immunol 2011; 73 (5) 496-504
  • 92 Looney TJ, Lee JY, Roskin KM , et al. Human B-cell isotype switching origins of IgE. J Allergy Clin Immunol 2016; 137 (2) 579-586.e7
  • 93 Jackson KJ, Wang Y, Collins AM. Human immunoglobulin classes and subclasses show variability in VDJ gene mutation levels. Immunol Cell Biol 2014; 92 (8) 729-733
  • 94 Hoh RA, Joshi SA, Liu Y , et al. Single B-cell deconvolution of peanut-specific antibody responses in allergic patients. J Allergy Clin Immunol 2016; 137 (1) 157-167
  • 95 Brusco A, Saviozzi S, Cinque F , et al. Molecular characterization of immunoglobulin G4 gene isoallotypes. Eur J Immunogenet 1998; 25 (5) 349-355
  • 96 Ahmad M, Mahajan VS, Mattoo H, Stone JH, Pillai S. Individuals with IgG4-related disease do not have an increased frequency of the K409 variant of IgG4 that compromises Fab-arm exchange. J Rheumatol 2014; 41 (1) 185-187
  • 97 Rivat L, Rivat C, Ropartz C. An abnormal Cgamma 4 gene among the Negro population. Ann Immunol (Paris) 1975; 126 (1) 41-44
  • 98 Natvig JB, Kunkel HG. A HYBRID IgG4-IgG2 immunoglobulin. J Immunol 1974; 112 (4) 1277-1284
  • 99 Jacobsen FW, Padaki R, Morris AE , et al. Molecular and functional characterization of cynomolgus monkey IgG subclasses. J Immunol 2011; 186 (1) 341-349
  • 100 Scinicariello F, Engleman CN, Jayashankar L, McClure HM, Attanasio R. Rhesus macaque antibody molecules: sequences and heterogeneity of alpha and gamma constant regions. Immunology 2004; 111 (1) 66-74
  • 101 Wang W, Xu R, Li J. Production of native bispecific antibodies in rabbits. PLoS ONE 2010; 5 (6) e10879
  • 102 Yang X, Ambrogelly A. Enlarging the repertoire of therapeutic monoclonal antibodies platforms: domesticating half molecule exchange to produce stable IgG4 and IgG1 bispecific antibodies. Curr Opin Biotechnol 2014; 30: 225-229
  • 103 Schuurman J, Graus YF, Labrijn AF, Ruuls S, Parren PW. Opening the door to innovation. MAbs 2014; 6 (4) 812-819
  • 104 Miller DH, Khan OA, Sheremata WA , et al; International Natalizumab Multiple Sclerosis Trial Group. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348 (1) 15-23
  • 105 Reddy MP, Kinney CA, Chaikin MA , et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol 2000; 164 (4) 1925-1933
  • 106 Hutchins JT, Kull Jr FC, Bynum J, Knick VC, Thurmond LM, Ray P. Improved biodistribution, tumor targeting, and reduced immunogenicity in mice with a gamma 4 variant of Campath-1H. Proc Natl Acad Sci U S A 1995; 92 (26) 11980-11984
  • 107 Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 2007; 25 (11) 1256-1264
  • 108 Wilkinson IC, Fowler SB, Machiesky L , et al. Monovalent IgG4 molecules: immunoglobulin Fc mutations that result in a monomeric structure. MAbs 2013; 5 (3) 406-417
  • 109 Labrijn AF, Meesters JI, de Goeij BE , et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci U S A 2013; 110 (13) 5145-5150
  • 110 van Neerven RJ, Wikborg T, Lund G , et al. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J Immunol 1999; 163 (5) 2944-2952
  • 111 Subbarayal B, Schiller D, Möbs C , et al. Kinetics, cross-reactivity, and specificity of Bet v 1-specific IgG4 antibodies induced by immunotherapy with birch pollen. Allergy 2013; 68 (11) 1377-1386
  • 112 Bodtger U, Ejrnaes AM, Hummelshoj L, Jacobi HH, Poulsen LK, Svenson M. Is immunotherapy-induced birch-pollen-specific IgG4 a marker for decreased allergen-specific sensitivity?. Int Arch Allergy Immunol 2005; 136 (4) 340-346
  • 113 Nouri-Aria KT, Wachholz PA, Francis JN , et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 2004; 172 (5) 3252-3259
  • 114 Shamji MH, Ljørring C, Francis JN , et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy 2012; 67 (2) 217-226
  • 115 Jones SM, Pons L, Roberts JL , et al. Clinical efficacy and immune regulation with peanut oral immunotherapy. J Allergy Clin Immunol 2009; 124 (2) 292-300 , 300.e1–300.e97
  • 116 Ruiter B, Knol EF, van Neerven RJ , et al. Maintenance of tolerance to cow's milk in atopic individuals is characterized by high levels of specific immunoglobulin G4. Clin Exp Allergy 2007; 37 (7) 1103-1110
  • 117 Chliva C, Aggelides X, Makris M, Katoulis A, Rigopoulos D, Tiligada E. Comparable profiles of serum histamine and IgG4 levels in allergic beekeepers. Allergy 2015; 70 (4) 457-460
  • 118 Van Milligen FJ, Craig S, Rogers BL, Van Swieten P, Aalberse RC. Differences between specificities of IgE and IgG4 antibodies: studies using recombinant chain 1 and chain 2 of the major cat allergen Felis domesticus (Fel d) I. Clin Exp Allergy 1995; 25 (3) 247-251
  • 119 Santos AF, James LK, Bahnson HT , et al. IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens. J Allergy Clin Immunol 2015; 135 (5) 1249-1256
  • 120 Ejrnaes AM, Svenson M, Lund G, Larsen JN, Jacobi H. Inhibition of rBet v 1-induced basophil histamine release with specific immunotherapy-induced serum immunoglobulin G: no evidence that FcgammaRIIB signalling is important. Clin Exp Allergy 2006; 36 (3) 273-282
  • 121 García BE, Sanz ML, Gato JJ, Fernández J, Oehling A. IgG4 blocking effect on the release of antigen-specific histamine. J Investig Allergol Clin Immunol 1993; 3 (1) 26-33
  • 122 Schuurman J, Perdok GJ, Mueller GA, Aalberse RC. Complementation of Der P 2-induced histamine release from human basophils sensitized with monoclonal IgE: not only by IgE, but also by IgG antibodies directed to a nonoverlapping epitope of Der p 2. J Allergy Clin Immunol 1998; 101 (3) 404-409
  • 123 Hussain R, Poindexter RW, Ottesen EA. Control of allergic reactivity in human filariasis. Predominant localization of blocking antibody to the IgG4 subclass. J Immunol 1992; 148 (9) 2731-2737
  • 124 James LK, Shamji MH, Walker SM , et al. Long-term tolerance after allergen immunotherapy is accompanied by selective persistence of blocking antibodies. J Allergy Clin Immunol 2011; 127 (2) 509-516.e1 , 5
  • 125 Lundberg K, Lindstedt M, Larsson K , et al. Augmented Phl p 5-specific Th2 response after exposure of dendritic cells to allergen in complex with specific IgE compared to IgG1 and IgG4. Clin Immunol 2008; 128 (3) 358-365
  • 126 Krop EJ, Doekes G, Heederik DJ, Aalberse RC, van der Zee JS. IgG4 antibodies against rodents in laboratory animal workers do not protect against allergic sensitization. Allergy 2011; 66 (4) 517-522
  • 127 Adjobimey T, Hoerauf A. Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann Trop Med Parasitol 2010; 104 (6) 455-464
  • 128 Ottesen EA, Skvaril F, Tripathy SP, Poindexter RW, Hussain R. Prominence of IgG4 in the IgG antibody response to human filariasis. J Immunol 1985; 134 (4) 2707-2712
  • 129 Turner JD, Faulkner H, Kamgno J , et al. Allergen-specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection. Microbes Infect 2005; 7 (7–8) 990-996
  • 130 Kurniawan A, Yazdanbakhsh M, van Ree R , et al. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol 1993; 150 (9) 3941-3950
  • 131 Zitvogel L, Kroemer G. Cancer: Antibodies regulate antitumour immunity. Nature 2015; 521 (7550) 35-37
  • 132 Sitaru C, Mihai S, Zillikens D. The relevance of the IgG subclass of autoantibodies for blister induction in autoimmune bullous skin diseases. Arch Dermatol Res 2007; 299 (1) 1-8
  • 133 Laffitte E, Skaria M, Jaunin F , et al. Autoantibodies to the extracellular and intracellular domain of bullous pemphigoid 180, the putative key autoantigen in bullous pemphigoid, belong predominantly to the IgG1 and IgG4 subclasses. Br J Dermatol 2001; 144 (4) 760-768
  • 134 Skaria M, Jaunin F, Hunziker T , et al. IgG autoantibodies from bullous pemphigoid patients recognize multiple antigenic reactive sites located predominantly within the B and C subdomains of the COOH-terminus of BP230. J Invest Dermatol 2000; 114 (5) 998-1004
  • 135 Bird P, Friedmann PS, Ling N, Bird AG, Thompson RA. Subclass distribution of IgG autoantibodies in bullous pemphigoid. J Invest Dermatol 1986; 86 (1) 21-25
  • 136 Ujiie H, Sasaoka T, Izumi K , et al. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation. J Immunol 2014; 193 (9) 4415-4428
  • 137 Yeh SW, Cavacini LA, Bhol KC , et al. Pathogenic human monoclonal antibody against desmoglein 3. Clin Immunol 2006; 120 (1) 68-75
  • 138 Liu Z, Diaz LA, Troy JL , et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 1993; 92 (5) 2480-2488
  • 139 Yamamoto K, Inoue N, Masuda R , et al. Cloning of hamster type XVII collagen cDNA, and pathogenesis of anti-type XVII collagen antibody and complement in hamster bullous pemphigoid. J Invest Dermatol 2002; 118 (3) 485-492
  • 140 Parlowsky T, Welzel J, Amagai M, Zillikens D, Wygold T. Neonatal pemphigus vulgaris: IgG4 autoantibodies to desmoglein 3 induce skin blisters in newborns. J Am Acad Dermatol 2003; 48 (4) 623-625
  • 141 Huijbers MG, Querol LA, Niks EH , et al. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol 2015; 22 (8) 1151-1161
  • 142 Niks EH, van Leeuwen Y, Leite MI , et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol 2008; 195 (1–2) 151-156
  • 143 Cole RN, Reddel SW, Gervásio OL, Phillips WD. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol 2008; 63 (6) 782-789
  • 144 Huijbers MG, Zhang W, Klooster R , et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A 2013; 110 (51) 20783-20788
  • 145 Ferrari S, Mudde GC, Rieger M, Veyradier A, Kremer Hovinga JA, Scheiflinger F. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2009; 7 (10) 1703-1710
  • 146 Pos W, Luken BM, Sorvillo N, Kremer Hovinga JA, Voorberg J. Humoral immune response to ADAMTS13 in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2011; 9 (7) 1285-1291
  • 147 van Helden PM, van den Berg HM, Gouw SC , et al. IgG subclasses of anti-FVIII antibodies during immune tolerance induction in patients with hemophilia A. Br J Haematol 2008; 142 (4) 644-652
  • 148 Andersen BR, Terry WD. Gamma G4 globulin Ab causing inhibition of clotting factor VIII. Nature 1968; 217: 174-175
  • 149 Iizuka A, Nagao T. Analysis of IgG heavy chain subclasses of alloantibodies to factor IX by crossed immunoelectrophoresis of factor IX using the intermediate gel technique. Br J Haematol 1983; 53 (4) 687-688
  • 150 van Schouwenburg PA, Krieckaert CL, Nurmohamed M , et al. IgG4 production against adalimumab during long term treatment of RA patients. J Clin Immunol 2012; 32 (5) 1000-1006
  • 151 Wouters D, Stapel S, Vis M , et al. Human antichimeric antibodies to infliximab and infusion-related allergic reactions in patients with rheumatoid arthritis. Allergy Clin Immunol Int 2007; (Suppl. 02) 198-200
  • 152 van Schie KA, Hart MH, de Groot ER , et al. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann Rheum Dis 2015; 74 (1) 311-314
  • 153 Bartelds GM, Krieckaert CL, Nurmohamed MT , et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 2011; 305 (14) 1460-1468
  • 154 Deisenhammer F, Reindl M, Berger T. Immunoglobulin subclasses in patients with neutralizing and nonneutralizing antibodies against IFN-beta1b. J Interferon Cytokine Res 2001; 21 (3) 167-171
  • 155 Lundkvist M, Engdahl E, Holmén C , et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Mult Scler 2013; 19 (6) 757-764
  • 156 Zhao J, Yan Y, Cui Z, Yang R, Zhao MH. The immunoglobulin G subclass distribution of anti-GBM autoantibodies against rHalpha3(IV)NC1 is associated with disease severity. Hum Immunol 2009; 70 (6) 425-429
  • 157 Olaru F, Wang XP, Luo W , et al. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-glomerular basement membrane autoantibodies specific for α345NC1 hexamers. J Immunol 2013; 190 (4) 1424-1432
  • 158 Beck Jr LH, Bonegio RG, Lambeau G , et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009; 361 (1) 11-21
  • 159 Tomas NM, Beck Jr LH, Meyer-Schwesinger C , et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014; 371 (24) 2277-2287
  • 160 Chapuy-Regaud S, Nogueira L, Clavel C, Sebbag M, Vincent C, Serre G. IgG subclass distribution of the rheumatoid arthritis-specific autoantibodies to citrullinated fibrin. Clin Exp Immunol 2005; 139 (3) 542-550
  • 161 Verpoort KN, Jol-van der Zijde CM, Papendrecht-van der Voort EA , et al. Isotype distribution of anti-cyclic citrullinated peptide antibodies in undifferentiated arthritis and rheumatoid arthritis reflects an ongoing immune response. Arthritis Rheum 2006; 54 (12) 3799-3808
  • 162 Bos WH, Bartelds GM, Wolbink GJ , et al. Differential response of the rheumatoid factor and anticitrullinated protein antibodies during adalimumab treatment in patients with rheumatoid arthritis. J Rheumatol 2008; 35 (10) 1972-1977
  • 163 van der Giessen M, Rossouw E, van Veen TA, van Loghem E, Zegers BJ, Sander PC. Quantification of IgG subclasses in sera of normal adults and healthy children between 4 and 12 years of age. Clin Exp Immunol 1975; 21 (3) 501-509
  • 164 Ebbo M, Grados A, Bernit E , et al. Pathologies associated with serum IgG4 elevation. Int J Rheumatol 2012; 2012: 602809
  • 165 Chen LF, Mo YQ, Ma JD, Luo L, Zheng DH, Dai L. Elevated serum IgG4 defines specific clinical phenotype of rheumatoid arthritis. Mediators Inflamm 2014; 2014: 635293
  • 166 Yamamoto M, Tabeya T, Naishiro Y , et al. Value of serum IgG4 in the diagnosis of IgG4-related disease and in differentiation from rheumatic diseases and other diseases. Mod Rheumatol 2012; 22 (3) 419-425
  • 167 Sah RP, Chari ST. Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis. Curr Opin Rheumatol 2011; 23 (1) 108-113
  • 168 Mahajan VS, Mattoo H, Deshpande V, Pillai SS, Stone JH. IgG4-related disease. Annu Rev Pathol 2014; 9: 315-347
  • 169 Maillette de Buy Wenniger LJ, Doorenspleet ME, Klarenbeek PL , et al. Immunoglobulin G4+ clones identified by next-generation sequencing dominate the B cell receptor repertoire in immunoglobulin G4 associated cholangitis. Hepatology 2013; 57 (6) 2390-2398
  • 170 Mattoo H, Mahajan VS, Della-Torre E , et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol 2014; 134 (3) 679-687
  • 171 Culver EL, Vermeulen E, Makuch M , et al. Increased IgG4 responses to multiple food and animal antigens indicate a polyclonal expansion and differentiation of pre-existing B cells in IgG4-related disease. Ann Rheum Dis 2015; 74 (5) 944-947
  • 172 Zen Y, Fujii T, Harada K , et al. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology 2007; 45 (6) 1538-1546
  • 173 Della Torre E, Mattoo H, Mahajan VS, Carruthers M, Pillai S, Stone JH. Prevalence of atopy, eosinophilia, and IgE elevation in IgG4-related disease. Allergy 2014; 69 (2) 269-272
  • 174 Lighaam LC, Vermeulen E, Bleker Td , et al. Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J Allergy Clin Immunol 2014; 133 (1) 267-70.e1 , 6
  • 175 Punnonen J, Aversa G, Cocks BG , et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A 1993; 90 (8) 3730-3734
  • 176 Meiler F, Zumkehr J, Klunker S, Rückert B, Akdis CA, Akdis M. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 2008; 205 (12) 2887-2898
  • 177 Meiler F, Klunker S, Zimmermann M, Akdis CA, Akdis M. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy 2008; 63 (11) 1455-1463
  • 178 Satoguina JS, Weyand E, Larbi J, Hoerauf A. T regulatory-1 cells induce IgG4 production by B cells: role of IL-10. J Immunol 2005; 174 (8) 4718-4726
  • 179 Aalberse RC, Van Milligen F, Tan KY, Stapel SO. Allergen-specific IgG4 in atopic disease. Allergy 1993; 48 (8) 559-569
  • 180 Montalvão SA, Tucunduva AC, Siqueira LH, Sambo AL, Medina SS, Ozelo MC. A longitudinal evaluation of anti-FVIII antibodies demonstrated IgG4 subclass is mainly correlated with high-titre inhibitor in haemophilia A patients. Haemophilia 2015; 21 (5) 686-692
  • 181 Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 2015; 8 (1) 17
  • 182 Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 2012; 12 (7) 517-531
  • 183 Zhang K, Mills FC, Saxon A. Switch circles from IL-4-directed epsilon class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from mu to epsilon Ig heavy chain gene. J Immunol 1994; 152 (7) 3427-3435
  • 184 Davies JM, Platts-Mills TA, Aalberse RC. The enigma of IgE+ B-cell memory in human subjects. J Allergy Clin Immunol 2013; 131 (4) 972-976
  • 185 Kitani A, Strober W. Regulation of C gamma subclass germ-line transcripts in human peripheral blood B cells. J Immunol 1993; 151 (7) 3478-3488
  • 186 Agresti A, Vercelli D. c-Rel is a selective activator of a novel IL-4/CD40 responsive element in the human Ig gamma4 germline promoter. Mol Immunol 2002; 38 (11) 849-859
  • 187 Gascan H, Gauchat JF, Roncarolo MG, Yssel H, Spits H, de Vries JE. Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J Exp Med 1991; 173 (3) 747-750
  • 188 Werner-Favre C, Bovia F, Schneider P , et al. IgG subclass switch capacity is low in switched and in IgM-only, but high in IgD+IgM+, post-germinal center (CD27+) human B cells. Eur J Immunol 2001; 31 (1) 243-249
  • 189 Fujieda S, Zhang K, Saxon A. IL-4 plus CD40 monoclonal antibody induces human B cells gamma subclass-specific isotype switch: switching to gamma 1, gamma 3, and gamma 4, but not gamma 2. J Immunol 1995; 155 (5) 2318-2328
  • 190 Pène J, Gauchat JF, Lécart S , et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol 2004; 172 (9) 5154-5157
  • 191 Wood N, Bourque K, Donaldson DD , et al. IL-21 effects on human IgE production in response to IL-4 or IL-13. Cell Immunol 2004; 231 (1–2): 133-145
  • 192 Fairfax KC, Everts B, Amiel E , et al. IL-4-secreting secondary T follicular helper (Tfh) cells arise from memory T cells, not persisting Tfh cells, through a B cell-dependent mechanism. J Immunol 2015; 194 (7) 2999-3010
  • 193 Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75 (1) 14-24
  • 194 Sage PT, Sharpe AH. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol 2015; 36 (7) 410-418
  • 195 Akiyama M, Suzuki K, Yamaoka K , et al. Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis Rheum (Munch) 2015; 67 (9) 2476-2481
  • 196 Kimata H, Fujimoto M. Growth hormone and insulin-like growth factor I induce immunoglobulin (Ig)E and IgG4 production by human B cells. J Exp Med 1994; 180 (2) 727-732
  • 197 Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 1998; 160 (7) 3555-3561
  • 198 Akdis CA, Blesken T, Akdis M, Wüthrich B, Blaser K. Role of interleukin 10 in specific immunotherapy. J Clin Invest 1998; 102 (1) 98-106
  • 199 Kobayashi N, Nagumo H, Agematsu K. IL-10 enhances B-cell IgE synthesis by promoting differentiation into plasma cells, a process that is inhibited by CD27/CD70 interaction. Clin Exp Immunol 2002; 129 (3) 446-452
  • 200 Punnonen J, de Waal Malefyt R, van Vlasselaer P, Gauchat JF, de Vries JE. IL-10 and viral IL-10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes. J Immunol 1993; 151 (3) 1280-1289
  • 201 Brière F, Servet-Delprat C, Bridon JM, Saint-Remy JM, Banchereau J. Human interleukin 10 induces naive surface immunoglobulin D+ (sIgD+) B cells to secrete IgG1 and IgG3. J Exp Med 1994; 179 (2) 757-762
  • 202 Moens L, Tangye SG. Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol 2014; 5: 65
  • 203 Satoguina JS, Adjobimey T, Arndts K , et al. Tr1 and naturally occurring regulatory T cells induce IgG4 in B cells through GITR/GITR-L interaction, IL-10 and TGF-beta. Eur J Immunol 2008; 38 (11) 3101-3113
  • 204 van de Veen W, Stanic B, Yaman G , et al. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J Allergy Clin Immunol 2013; 131 (4) 1204-1212
  • 205 Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Ellis J, Bonnefoy JY. CD86 (B7-2) on human B cells. A functional role in proliferation and selective differentiation into IgE- and IgG4-producing cells. J Biol Chem 1997; 272 (25) 15613-15619
  • 206 de Boer BA, Kruize YC, Rotmans PJ, Yazdanbakhsh M. Interleukin-12 suppresses immunoglobulin E production but enhances immunoglobulin G4 production by human peripheral blood mononuclear cells. Infect Immun 1997; 65 (3) 1122-1125
  • 207 Kimata H, Fujimoto M, Ishioka C, Yoshida A. Histamine selectively enhances human immunoglobulin E (IgE) and IgG4 production induced by anti-CD58 monoclonal antibody. J Exp Med 1996; 184 (2) 357-364
  • 208 Kimata H, Yoshida A, Ishioka C, Fujimoto M, Lindley I, Furusho K. RANTES and macrophage inflammatory protein 1 alpha selectively enhance immunoglobulin (IgE) and IgG4 production by human B cells. J Exp Med 1996; 183 (5) 2397-2402
  • 209 Akdis CA, Blesken T, Akdis M, Alkan SS, Heusser CH, Blaser K. Glucocorticoids inhibit human antigen-specific and enhance total IgE and IgG4 production due to differential effects on T and B cells in vitro. Eur J Immunol 1997; 27 (9) 2351-2357
  • 210 Spolski R, Leonard WJ. IL-21 is an immune activator that also mediates suppression via IL-10. Crit Rev Immunol 2010; 30 (6) 559-570
  • 211 Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol 2015; 15 (3) 149-159
  • 212 Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol 2015; 15 (3) 160-171
  • 213 Khosroshahi A, Carruthers MN, Deshpande V, Unizony S, Bloch DB, Stone JH. Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore) 2012; 91 (1) 57-66
  • 214 Khosroshahi A, Bloch DB, Deshpande V, Stone JH. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum 2010; 62 (6) 1755-1762
  • 215 Carruthers MN, Topazian MD, Khosroshahi A , et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis 2015; 74 (6) 1171-1177
  • 216 Wallace ZS, Mattoo H, Carruthers M , et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann Rheum Dis 2015; 74 (1) 190-195