Synlett 2022; 33(07): 689-693
DOI: 10.1055/s-0041-1737338
letter

1,4,2-Dioxazol-5-ones as Isocyanate Equivalents: Chemoselective Non-Metal-Catalyzed Carboxamidation of Indoles

a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Deepa Parmar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Rahul Rayani
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
Rakesh Kusurkar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
,
,
Uttam Kaneriya
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Uday Gondaliya
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Nirali Parmar
a   Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Sarkhej, Bavla Highway, Ahmedabad, Gujarat 38221, India
,
Jigar Y. Soni
b   Department of Chemistry, Faculty of Science, The Madhav University, Pindwara (Sirohi)-307026, Rajasthan, India
› Author Affiliations


Abstract

1,4,2-Dioxazol-5-ones are known to undergo decarboxylation under thermal conditions followed by Lossen’s rearrangement to give isocyanates. Described herein is the in situ trapping of the isocyanates by indoles to give indole-3-carboxamides in good to excellent yields.

Supporting Information



Publication History

Received: 07 January 2022

Accepted after revision: 15 January 2022

Article published online:
03 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Pedras MS, Yaya EE, Glawischnig E. Nat. Prod. Rep. 2011; 28: 1381
    • 1b Norman MH, Navas FIII, Thompson JB, Rigdon GC. J. Med. Chem. 1996; 39: 4692
    • 1c Smits RA, de Esch IJ. P, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adami M, Haaksma E, Leurs R. J. Med. Chem. 2008; 51: 7855
    • 1d Cai X, Snieckus V. Org. Lett. 2004; 6: 2293
    • 1e Kiyoi T, York M, Francis S, Edwards D, Walker G, Houghton AK, Cottney JE, Baker J, Adam JM. Bioorg. Med. Chem. Lett. 2010; 20: 4918
    • 2a Clark RD, Miller AB, Berger J, Repke DB, Weinhardt KK, Kowalczyk BA, Eglen RM, Bonhaus DW, Lee C.-H, Michel AD, Smith WL, Wong EH. F. J. Med. Chem. 1993; 36: 2645
    • 2b Mouaddib A, Joseph B, Hasnaoui A, Mérour J.-Y. Synthesis 2000; 549
    • 2c Carroll AR, Avery VM. J. Nat. Prod. 2009; 72: 696
    • 2d Liberio MS, Sooraj D, Williams ED, Feng Y, Davis RA. Tetrahedron Lett. 2011; 52: 6729
    • 2e Ekoue-Kovi K, Wolf C. Chem. Eur. J. 2008; 14: 6302 ; and references cited therein
    • 3a Xiao Z, Yang M, Tebben AJ, Galella MA, Weinstine DS. Tetrahedron Lett. 2010; 51: 5843
    • 3b Caramella AP, Corsioco AC, Corsaro A, Del Monte D, Albini FM. Tetrahedron 1982; 38: 173
    • 4a Soledade M, Pedras C, Liu J. Org. Biomol. Chem. 2004; 2: 1070
    • 4b Spanò V, Attanzio A, Cascioferro S, Carbone A, Montalbano A, Barraja P, Tesoriere L, Cirrincione G, Diana P, Parrino B. Mar. Drugs 2016; 14: 226
  • 5 Smaliy RV, Chaikovskaya AA, Pinchuk AM, Tolmachev AA. Synthesis 2003; 2525
    • 6a Peng J, Liu L, Hu Z, Huang J, Zhu Q. Chem. Commun. 2012; 48: 3772
    • 6b Xing Q, Shi L, Lang R, Xiaa C, Li F. Chem. Commun. 2012; 48: 11023
    • 7a Velavan A, Sumathi S, Balasubramanian KK. Eur. J. Org. Chem. 2013; 3148
    • 7b Adam JM, Cairns J, Caulfield W, Cowley P, Cumming I, Easson M, Edwards D, Ferguson M, Goodwin R, Jeremiah F, Kiyoi T, Mistry A, Moir E, Morphy R, Tierney J, York M, Baker J, Cottney JE, Houghton AK, Westwood PJ, Walker G. Med. Chem. Commun. 2010; 1: 54
    • 8a Uehara A, Olivero S, Michelet B, Martin-Mingot A, Thibaudeau S, Duñach E. Eur. J. Org. Chem. 2019; 46
    • 8b Hall A, Billinton A, Brown SH, Chowdhury A, Giblin GM. P, Goldsmith P, Hurst DN, Naylor A, Patel S, Scoccitti T, Theobald PJ. Bioorg. Med. Chem. Lett. 2008; 18: 2684
  • 9 Nishida Y, Takeda N, Matsuno K, Miyata O, Ueda M. Eur. J. Org. Chem. 2018; 3928
  • 10 Nemoto K, Tanaka S, Konno M, Onozawa S, Chiba M, Tanaka Y, Sasaki Y, Okubo R, Hattori T. Tetrahedron 2016; 72: 734
    • 11a Plagens A, Laue TM. Named Organic Reactions (2nd ed.). Wiley; Chichester: 2005
    • 11b Wolff H. Org. React. 1946; 3: 307
    • 11c Schmidt KF. Z. Angew. Chem. 1923; 36: 511
    • 11d Schmidt KF. Ber. Dtsch. Chem. Ges. 1924; 57: 704
    • 11e Datta SK, Grundmann C, Bhattacharyya NK. J. Chem. Soc. C 1970; 2058
    • 12a Wallis ES, Lane JF. Org. React. 1946; 3: 267
    • 12b Beckwith RC, Margerum DW. Inorg. Chem. 1997; 36 (17), 3754
    • 12c Barkalow JH, Breting J, Gaede BJ, Haight AR, Henry R, Kotecki B, Mei J, Pearl KB, Tedrow JS, Viswanath SK. Org. Process Res. Dev. 2007; 11: 693
    • 12d McDermott TS, Bhagavatula L, Borchardt TB, Engstrom KM, Gandarilla J, Kotecki BJ, Kruger AW, Rozema MJ, Sheikh AY, Wagaw SH, Wittenberger SJ. Org. Process Res. Dev. 2009; 13: 1145
    • 13a Lwowski W. Azides, Nitrenes: Reactivity, Utility . Scriven EF.V. Academic Press; Orlando: 1984. Chap. 4; 20
    • 13b Sprecher H, Pérez Payán MN, Weber M, Yilmaz G, Wille G. J. Flow Chem. 2012; 2: 20
    • 13c Tudhope SR, Bellamy JA, Ball A, Rajasekar D, Azadi-Ardakani M, Meera HS, Gnanadeepam JM, Saiganesh R, Gibson F, He L, Behrens CH, Underiner G, Marfurt J, Favre N. Org. Process Res. Dev. 2012; 16: 635
    • 13d Grongsaard P, Bulger PG, Wallace DJ, Tan L, Chen Q, Dolman SJ, Nyrop J, Hoerrner RS, Weisel M, Arredondo J, Itoh T, Xie C, Wen X, Zhao D, Muzzio DJ, Bassan EM, Shultz CS. Org. Process Res. Dev. 2012; 16: 1069
    • 14a Lossen W. Justus Liebigs Ann. Chem. 1872; 161: 347
    • 14b Yale HL. Chem. Rev. 1943; 33: 209
    • 14c Bauer L, Exner O. Angew. Chem., Int. Ed. Engl. 1974; 13: 376
    • 14d Shiori T. Comprehensive Organic Synthesis, Vol. 6. Trost BM, Fleming I. Pergamon; Oxford: 1991. Chap. 4.4, 821
    • 14e Kreye O, Wald S, Meier MA. R. Adv. Synth. Catal. 2013; 355: 81
    • 14f Yadav DK, Yadav AK, Srivastava VP, Watal GW, Yadav LD. S. Tetrahedron Lett. 2012; 53: 2890
    • 14g Hamon F, Prié G, Lecornué F, Papot S. Tetrahedron Lett. 2009; 50: 6800
    • 14h Hoshino Y, Shimbo Y, Ohtsuka N, Honda K. Tetrahedron Lett. 2015; 56: 710
    • 15a Dubé P, Nathel NF, Vetelino M, Couturier M, Aboussafy CL, Pichette S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
    • 15b Zhao J, Gimi R, Katti S, Reardon M, Nivorozhkin V, Konowicz P, Lee E, Sole L, Green G, Siegel CS. Org. Process Res. Dev. 2015; 19: 576
  • 16 Vala A, Parmar N, Soni J, Kottori S, Guduru R. Synlett 2021; 32: 2080
  • 17 Ji C, Xu Q, Shi M. Adv. Synth. Catal. 2017; 359: 974
  • 18 N-Phenyl-1H-indole-3-carboxamide (3aa); Typical Procedure KO t Bu (20 mmol) was added in one portion to a stirred solution of 1H-indole (2a; 10 mmol) and 3-phenyl-1,4,2-dioxazol-5-one (1a; 12 mmol) in toluene (20 mL) at r.t., and the mixture was then stirred at 110 °C for 1–2 h until the reaction was complete (TLC). The mixture was cooled to r.t. and H2O (20 mL) was then added. The resulting mixture was extracted with EtOAc (3 × 50 mL), and the extracts were dried (Na2SO4) and then concentrated under reduced pressure. The residue was purified by chromatography [silica gel, hexane–EtOAc (8:2)] to give a pale yellow solid; yield: 58 mg (57%); mp 172–174 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 1.74 (br s, 1 H), 9.71 (br s, 1 H), 8.30 (d, J = 3.0 Hz, 1 H), 8.20 (d, J = 7.9 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 2 H), 7.47 (d, J = 7.9 Hz, 1 H), 7.33 (t, J = 7.7 Hz, 2 H), 7.17 (m, 2 H), 7.04 (t, J = 7.4 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 163.73, 140.30, 136.69, 129.13, 128.99, 126.90, 123.05, 122.59, 121.56, 121.11, 120.20, 112.41, 110.97. HRMS (ESI): m/z [M + H]+ calcd for C15H13N2O: 237.1028; found: 237.1026.