Synlett 2022; 33(04): 376-380
DOI: 10.1055/s-0041-1737761
letter

Synthesis of Aryl Nitriles via Aerobic Oxidative Cleavage of Aryl C=C Bonds with (NH4)2CO3 as the Nitrogen Source

Yi Zheng
,
Wenbo Liu
,
Xinzhe Tian
,
Yun-Lai Ren
The authors would like to thank the Key Research and Development and Promotion Projects in Henan Province (212102310372), the Natural Science Foundation of Henan Province (212300410358), and the financial supports from the National Natural Science Foundation of China (21603060).


Abstract

An aerobic oxidative method was developed for conversion of arylethenes to aromatic nitriles using (NH4)2CO3 as the nitrogen source and Cu(NO3)2 as the catalyst. The present method allowed a series of arylethenes to underwent oxidative cleavage of C=C bonds to give the targeted products in low to high yields. In addition, the present conditions are compatible with many groups such as alkyl, alkoxy, N,N-dimethylamino, chloro, bromo, iodo, ester, cyano group, and so on.

Supporting Information



Publication History

Received: 20 November 2021

Accepted after revision: 14 December 2021

Article published online:
18 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhao LL, Dong YN, Xia QQ, Bai JF, Li YH. J. Org. Chem. 2020; 85: 6471
    • 1b Xu SB, Teng JG, Yu JT, Sun S, Cheng J. Org. Lett. 2019; 21: 9919
    • 1c Wang ZH, Wang X, Ura Y, Nishihara Y. Org. Lett. 2019; 21: 6779
    • 1d Liu LY, Yeung KS, Yu JQ. Chem. Eur. J. 2019; 25: 2199
    • 1e Bhagat SB, Telvekar VN. Synlett 2018; 29: 874
    • 1f Bhagat SB, Telvekar VN. Synlett 2018; 29: 874
    • 2a Lu RH, Yang TL, Chen X, Fan WZ, Chen PH, Lin ZY, Liu GS. J. Am. Chem. Soc. 2021; 143: 14451
    • 2b Kafourou P, Park B, Luke J, Tan LX, Panidi J, Glocklhofer F, Kim J, Anthopoulos TD, Kim JS, Lee K, Kwon S, Heeney M. Angew.Chem. Int. Ed. 2021; 60: 5970
    • 2c Miwa N, Tanaka C, Ishida S, Hirata G, Song JZ. Torigoe T, Kuninobu Y, Nishikata T. J. Am. Chem. Soc. 2020; 142: 1692
    • 2d Zhao Z, Tian XZ, Tang PC, Ren Y.-L, Zhao S, Zheng XF, Cheng XQ. ChemistrySelect 2021; 6: 1772
    • 2e Liu W, Tang P, Zheng Y, Ren Y.-L, Tian X, An W, Zheng X, Guo Y, Shen Z. Chem. Asian J. 2021; 16: 3509
    • 2f Ghodse SM, Takale BS, Hatvate NT, Telvekar VN. ChemistrySelect 2018; 3: 4168
    • 2g Moghaddam FM, Jarahiyan A, Haris MH, Pourjavadi A. Sci. Rep. 2021; 11: 11387
    • 2h Moghaddam FM, Pourkaveh R, Heidarian M. Catal. Commun. 2021; 149: 106211
    • 2i Moghaddam FM, Pourkaveh R, Gholamtajari M, Karimi A. ChemistrySelect 2019; 4: 9618
    • 2j Moghaddam FM, Tavakoli G, Rezvani HR. Appl. Organomet. Chem. 2014; 28: 750
    • 2k Zheng Y, Liu WB, Ren Y.-L, Guo YG, Tian XZ. ChemistrySelect 2021; 6: 13546
    • 3a Shee M, Shah SS, Singh ND. P. Chem. Commun. 2020; 56: 4240
    • 3b Mills LR, Graham JM, Patel P, Rousseaux SA. L. J. Am. Chem. Soc. 2019; 141: 19257
    • 3c Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci. 2019; 10: 994
    • 4a Hao QQ, Jia XQ, Ma JP, Gao MX, Fan XM, Gao J, Xu J. Chem. Asian J. 2021; 16: 1388
    • 4b Olivares M, Knörr P, Albrecht M. Dalton Trans. 2020; 49: 1981
    • 4c Kannan M, Barteja P, Devi P, Muthaiah S. J. Catal. 2020; 386: 1
    • 4d Das HS, Das S, Dey K, Singh B, Haridasan RK, Das A, Ahmed J, Mandal SK. Chem. Commun. 2019; 55: 11868
    • 4e Lu GP, Li XX, Zhong LX, Li SZ, Chen F. Green Chem. 2019; 21: 5386
    • 4f Achard T, Egly J, Sigrist M, Maisse-Francois A, Bellemin-Laponnaz S. Chem. Eur. J. 2019; 25: 13271
    • 5a Uludag N. Russ. J. Org. Chem. 2020; 56: 1640
    • 5b Zhang W, Lin JH, Zhang PF, Xiao JC. Chem. Commun. 2020; 56: 6221
    • 5c Zhao YY, Mei GY, Wang HB, Zhang GF, Ding CR. Synlett 2019; 30: 1484
    • 5d Ding R, Liu YG, Han MR, Jiao WY, Li JQ, Tian HY, Sun BG. J. Org. Chem. 2018; 83: 12939
    • 6a Hua ML, Song JL, Huang X, Liu HZ, Fan HL, Wang WT, He ZH, Liu ZT, Han BX. Angew. Chem. Int. Ed. 2021; 60: 21479
    • 6b Chatterjee B, Jena S, Chugh V, Weyhermuller T, Werle C. ACS Catal. 2021; 11: 7176
    • 6c Nandi J, Leadbeater NE. Org. Biomol. Chem. 2019; 17: 9182
    • 6d Fang WY, Qin HL. J. Org. Chem. 2019; 84: 5803
    • 6e Gurjar J, Bater J, Fokin VV. Chem. Eur. J. 2019; 25: 1906
    • 7a Li LQ, Hou ZW, Li PH, Wang L. Org. Lett. 2021; 23: 5983
    • 7b Ma JJ, Liu H, He X, Chen ZC, Liu Y, Hou CF, Sun ZZ, Chu WY. Org. Lett. 2021; 23: 2868
    • 7c Li J, Shi LL, Zhang SP, Wang XY, Zhu XJ, Hao XQ, Song MP. J. Org. Chem. 2020; 85: 10835
    • 7d Liu ML, You EL, Cao WG, Shi JJ. Asian J. Org. Chem. 2019; 8: 1850
    • 7e Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
  • 8 Lamani M, Prabhu KR. Angew. Chem. Int. Ed. 2010; 49: 6622
    • 9a Gu LJ, Jin C, Zhang HT, Liu JY, Li GP, Yang Z. Org. Biomol. Chem. 2016; 14: 6687
    • 9b Ge JJ, Yao CZ, Wang MM, Zheng HX, Kang YB, Li YD. Org. Lett. 2016; 18: 228
    • 9c Xu B, Jiang Q, Zhao A, Jia J, Liu Q, Luo WP, Guo CC. Chem. Commun. 2015; 51: 11264
  • 10 Delcaillau T, Woenckhaus-Alvarez A, Morandi B. Org. Lett. 2021; 23: 7018
  • 11 Otvos SB, Meszaros R, Varga G, Kocsis M, Konya Z, Kukovecz A, Pusztai P, Sipos P, Palinko I, Fulop F. Green Chem. 2018; 20: 1007
    • 12a Xing AP, Shen ZP, Zhao Z, Tian XZ, Ren Y.-L. Catal. Commun. 2021; 149: 106175
    • 12b Shen ZP, Liu WB, Tian XZ, Zhao Z, Ren Y.-L. Synlett 2020; 31: 1805
    • 12c Feng Q, Song QL. Adv. Synth. Catal. 2014; 356: 1697
    • 12d Hatvate NT, Takale BS, Ghodse SM, Telvekar VN. Tetrahedron Lett. 2018; 59: 3892
    • 12e Kangani CO, Day BW, Kelley DE. Tetrahedron Lett. 2008; 49: 914
    • 13a Heravi MM, Panahi F, Iranpoor N. Org. Lett. 2018; 20: 2753
    • 13b Zhao C, Fang WY, Rakesh KP, Qin HL. Org. Chem. Front. 2018; 5: 1835
    • 14a Wang T, Jiao N. J. Am. Chem. Soc. 2013; 135: 11692
    • 14b Zong XL, Zheng QZ, Jiao N. Org. Biomol. Chem. 2014; 12: 1198
  • 15 Liu Q, Fang B, Bai XH, Liu Y, Wu Y, Xu GM, Guo CC. Tetrahedron Lett. 2016; 57: 2620
  • 16 Xu JH, Jiang Q, Guo CC. J. Org. Chem. 2013; 78: 11881
    • 17a Shen ZP, Zhao Z, Ren Y.-L, Liu WB, Tian XZ, Zheng X, Zhao B. ChemistrySelect 2020; 5: 14288
    • 17b Tian XZ, Ren Y.-L, Cheng XQ, Lu WW. ChemistrySelect 2019; 4: 11496
    • 17c Long X, Wang J, Gao G, Nie C, Sun P, Xi Y, Li F. ACS Catal. 2021; 11: 10902
    • 17d Yang L, Shi L, Xia C, Li F. Chin. J. Catal. 2020; 41: 1152
    • 17e Yue CT, Xing Q, Sun P, Zhao ZL, Lv H, Li FW. Nat. Commun. 2021; 12: 1875
    • 17f Xie GL, Zhao YH, Cai CQ, Deng G.-J, Gong H. Org. Lett. 2021; 23: 410
    • 17g Fang JX, Li LS, Yang C, Chen JP, Deng GJ, Gong H. Org. Lett. 2018; 20: 7308
    • 17h Ye YQ, Yue YY, Guo XH, Chao JL, Yang Y, Sun CY, Lv QZ, Liu JM. Eur. J. Org. Chem. 2021; 3721
    • 17i Zhao PZ, Wang K, Yue YY, Chao JL, Ye YQ, Tang QH, Liu JM. ChemCatChem 2020; 12: 3207
    • 17j Zhang YY, Yue YY, Wang XP, Wang K, Lou YX, Yao MH, Zhuo KL, Lv QZ, Liu JM. Asian J. Org. Chem. 2018; 7: 2459
  • 18 Representative Procedure for Conversion of Various Arylethenes to Aromatic Nitriles To a stainless steel autoclave lined with Teflon, 0.5 mmol substrate, 0.075 mmol Cu(NO3)2, 1 mmol (NH4)2CO3, and 2 mL DMSO were added. Then the reactor was filled with 2 MPa oxygen and was heated under magnetic stirring at 140 °C for 30 h or 40 h (Caution: the use of the high-pressure oxygen is potentially hazardous. Thus, experiments using the high-pressure oxygen must only be carried out under rigorous safety precautions, and it is required to use the appropriate high-pressure reactor to avoid the potential leakage or explosion of the gas). Once the reaction time was reached, the mixture was cooled to room temperature, diluted with 30 mL diethyl ether, and filtered via a Celite pad. The organic mixture was washed with water (3 × 5 mL), dried with anhydrous sodium sulfate, and concentrated in vacuum. GC analysis provided the GC yields of the product with an internal standard. In addition, the combined crude product from another 1–5 parallel experiments was purified by column chromatography and identified by 1H NMR and 13C NMR spectroscopy. All the products are the known compounds, and the analytical data of several typical compounds are as follows: 4-Methoxylbenzonitrile2k 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 8.9 Hz, 2 H), 6.95 (d, J = 8.9 Hz, 2 H), 3.86 (s, 3 H) ppm. 13C NMR (101MHz, CDCl3): δ = 162.9, 134.0, 119.2, 114.8, 104.0, 55.6 ppm. 4-Phenylbenzonitrile2k 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.4 Hz, 2 H), 7.68 (d, J = 8.3 Hz, 2 H), 7.59 (d, J = 7.7 Hz, 2 H), 7.48 (t, J = 7.5 Hz, 2 H), 7.45–7.38 (m, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 145.7, 139.2, 132.6, 129.1, 128.7, 127.8, 127.3, 118.97, 110.9 ppm. 1-Naphthonitrile2k 1H NMR (400 MHz, CDCl3): δ = 8.22 (d, J = 8.3 Hz, 1 H), 8.06 (d, J = 8.3 Hz, 1 H), 7.89 (t, J = 7.5 Hz, 2 H), 7.67 (t, J = 7.6 Hz, 1 H), 7.60 (dd, J 1 = 7.9, J 1 = 7.1 Hz, 1 H), 7.50 (t, J = 7.7 Hz, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 133.3, 132.9, 132.6, 132.4, 128.7, 128.6, 127.6, 125.1, 125.0, 117.9, 110.2 ppm.
  • 19 Zhang F, Li LS, Zhang JY, Gong H. Sci. Rep. 2019; 9: 2787
    • 20a Schafer C, Ellstrom CJ, Torok B. Top. Catal. 2018; 61: 643
    • 20b Sharif M, Gong J.-L, Langer P, Beller M, Wu X.-F. Chem. Commun. 2014; 50: 4747