Synlett 2022; 33(07): 679-683
DOI: 10.1055/s-0041-1737910
letter

Photoredox One-Pot Synthesis of 3,4-Dihydroquinolin-2(1H)-ones

Jing-Yao He
a   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. of China
,
Qi-Fan Bai
a   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. of China
,
Xuewen Li
a   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. of China
,
Jianxin Shou
b   Office of Science and Technology, Shaoxing University, Shaoxing 312000, P. R. of China
,
Gaofeng Feng
a   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. of China
› Author Affiliations
Financial supports by National Natural Science Foundation of China (NO 21302130 and 21676166) and Science Technology Department of Zhejiang Province (2014C31141 and LGG20B060002) are acknowledged with thanks.


Abstract

A photoredox one-pot strategy for efficient accessing 3,4-dihydroquinolin-2(1H)-ones from anilines, oxalyl chloride, and electron-deficient alkenes is disclosed. The new approach features excellent synthetic efficiency, readily available starting materials, and simple operations. It is compatible with a variety of anilines and electron-deficient alkenes. A broad array of 3,4-dihydroquinolin-2(1H)-ones were prepared.

Supporting Information



Publication History

Received: 22 January 2022

Accepted after revision: 16 February 2022

Article published online:
08 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a McCoull W, Abrams RD, Anderson AE. Blades K, Barton P, Box M, Burgess J, Byth K, Cao Q, Chuaqui C, Carbajo RJ, Cheung T, Code E, Ferguson AD, Fillery S, Fuller NO, Gangl E, Gao N, Grist M, Hargreaves D, Howard MR, Hu J, Kemmitt PD, Nelson JE, O’Connell N, Prince DB, Raubo P, Rawlins PB, Robb GR, Shi J, Waring MJ, Whittaker D, Wylot M, Zhu X. J. Med. Chem. 2017; 60: 4386
    • 1b An C.-Y, Li X.-M, Luo H, Li C.-S, Wang M.-H, Xu G.-M, Wang B.-G. J. Nat. Prod. 2013; 76: 1896
    • 1c Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S. J. Antibiot. 2006; 59: 646
    • 1d He J, Lion U, Sattler I, Gollmick FA, Grabley S, Cai J, Meiners M, Schuenke H, Schaumann K, Dechert U, Krohn M. J. Nat. Prod. 2005; 68: 1397
  • 2 Dounay AB, Anderson M, Beche BM, Campbell BM, Claffey MM, Evdokimov A, Evrard E, Fonseca KR, Gan X, Ghosh S, Hayward MM, Horner W, Kim J.-Y, McAllister LA, Pandit J, Paradis V, Parikh VD, Reese MR, Rong S, Salafia MA, Schuyten K, Strick CA, Tuttle JB, Valentine J, Wang H, Zawadzke LE, Verhoest PR. ACS Med. Chem. Lett. 2012; 3: 187
  • 3 Bello FD, Bonifazi A, Giorgioni G, Cifani C, Bonaventura MV. M. D, Petrelli R, Piergentili A, Fontana S, Mannoli V, Yano H, Matucci R, Vistoli G, Quaglia W. J. Med. Chem. 2018; 61: 3712
  • 4 Saku O, Ishida H, Atsumi E, Sugimoto Y, Kodaira H, Kato Y, Shirakura S, Nakasato Y. J. Med. Chem. 2012; 55: 3436
  • 5 A review for 3,4-dioxygenated 5-hydroxy-4-aryl-quinolin-3(1H)-one alkaloids: Simonetti SO, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2016; 33: 1425
  • 6 Chen M, Shao C.-L, Meng H, She Z.-G, Wang C.-Y. J. Nat. Prod. 2014; 77: 2720

    • For selected examples, see:
    • 7a Disadee W, Lekky A, Ruchirawat S. J. Org. Chem. 2020; 85: 1802
    • 7b Xiong W, Hu K, Lei Y, Zhen Q, Zhao Z, Shao Y, Li R, Zhang Y, Chen J. Org. Lett. 2020; 22: 1239
    • 7c Jiang B, Tu S.-J, Kaur P, Wever W, Li G. J. Am. Chem. Soc. 2009; 131: 11660
    • 7d Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163

      For examples of domino reactions, see:
    • 8a Zhang X.-J, Wang Z, Zhang H, Gao J.-J, Yang K.-R, Fan W.-Y, Feng M.-L, Zhu W, Zhu Y.-P. J. Org. Chem. 2022; 87: 835
    • 8b Zhang P, Guo Y, Luan X. J. Am. Chem. Soc. 2021; 143: 21270
    • 8c Xiao F, Yuan S, Huang H, Zhang F, Deng G.-J. Org. Lett. 2019; 21: 8533
    • 8d Mupparapu N, Khan S, Bandhoria P, Athimoolam S, Ahmed QN. ACS Omega 2018; 3: 5445
    • 8e Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 8f Tietze L. Chem. Rev. 1996; 96: 115

      For selected example, see:
    • 9a Zhang W.-B, Chen G, Shi S.-L. J. Am. Chem. Soc. 2022; 144: 130
    • 9b Chen W, Li Z. J. Org. Chem. 2022; 87: 76
    • 9c Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. J. Am. Chem. Soc. 2021; 143: 20818
    • 9d Reguera L, Rivera DG. Chem. Rev. 2019; 119: 9836
    • 9e Zeng L, Sajiki H, Cui S. Org. Lett. 2019; 21: 5269
    • 9f Neochoritis CG, Zhao T, Dömling A. Chem. Rev. 2019; 119: 1970
    • 9g Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829

      Selected examples for synthesis of 3,4-dihydroquinolin-2(1H)-ones, see:
    • 10a Sun W, Ling C.-H, Au C.-M, Yu W.-Y. Org. Lett. 2021; 23: 3310
    • 10b Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Org. Lett. 2021; 23: 5631
    • 10c Wang S.-W, Yu J, Zhou Q.-Y, Chen S.-Y, Xu Z.-H, Tang S. ACS Sustainable Chem. Eng. 2019; 7: 10154
    • 10d Yang Z, Jiang K, Chen Y.-C, Wei Y. J. Org. Chem. 2019; 84: 6 3725
    • 10e Xiao H.-Z, Wang W.-S, Sun Y.-S, Luo H, Li B.-W, Wang X.-D, Lin W.-L, Luo F.-X. Org. Lett. 2019; 21: 1668
    • 10f Wang K, Chen X, Yuan M, Yao M, Zhu H, Xue Y, Luo Z, Zhang Y. J. Org. Chem. 2018; 83: 1525
    • 10g Cui Z, Du D.-M. J. Org. Chem. 2018; 83: 5149
    • 10h Faggyas R, Grace M, Williams L, Sutherland A. J. Org. Chem. 2018; 83: 12595
    • 10i Petersen WF, Taylor RJ. K, Donald JR. Org. Biomol. Chem. 2017; 15: 5831
    • 10j Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
    • 10k Guan M, Pang Y, Zhang J, Zhao Y. Chem. Commun. 2016; 52: 7043
    • 10l Torisawa Y, Nishi T, Minamikawa J. J. Bioorg. Med. Chem. Lett. 2007; 17: 448
    • 10m Yan J.-X, Li H, Liu X.-W, Shi J.-L, Wang X, Shi Z.-J. Angew. Chem. Int. Ed. 2014; 53: 4945
    • 10n Deng Y, Gong W, He J, Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 6692
    • 10o Tian J, Li L, Yan X.-L, Chen L.-G. J. Heterocycl. Chem. 2014; 51: 1811
    • 10p Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2008; 130: 14058
    • 10q Shi Z.-Z, Boultadakis-Arapinis M, Glorius F. Chem. Commun. 2013; 49: 6489
    • 10r Wang C.-M, Chen H, Wang Z.-F, Chen J.-A, Huang Y. Angew. Chem. Int. Ed. 2012; 51: 7242
    • 10s Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 5: 1043
    • 10t Jia J, Sarker M, Steinmetz MG, Shukla R, Rathore R. J. Org. Chem. 2008; 73: 8867
  • 11 Bei Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
  • 12 General Procedure for Photoredox One-Pot Synthesis of 3,4-Dihydroquinolin-2(1H)-ones 8at To a dry 20 mL reaction vial equipped with a stir bar was charged with CH2Cl2 (2 mL) and oxalyl chloride (3 mmol, 10 equiv), then a solution of anilines (0.3 mmol, 1.0 equiv) in CH2Cl2 (2 mL) was added quickly at room temperature. After stirring at the same temperature for 1 h, H2O (2 mL) was added to the mixture, followed by Ir[dF(CF3)ppy]2(dtbbpy)PF6 (2 mol%), K2CO3 (1.5 mmol, 5 equiv), and alkenes (0.9 mmol, 3.0 equiv). The vial was covered and bubbled with nitrogen for 5 min. After irradiated with 36 W blue LEDs for 36 h, the mixture was then diluted with EtOAc (40 mL) and H2O (5 mL), and the organic layer was recovered, washed with brine, dried over Na2SO4, filtrated, concentrated under reduced pressure, and purified with column chromatography to afford 3,4-dihydroquinolin-2(1H)-ones 8at.
  • 13 1-Benzyl-6-methyl-4-(phenylsulfonyl)-3,4-dihydroquinolin-2(1H)-one (8o) Pale yellow solid; yield 38% (44.7 mg); Rf = 0.14 (25% EtOAc–PE); mp 161–163 °C. IR (film): 2929, 1673, 1509, 1447, 1377, 1308, 1265, 1147, 815 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.70–7.64 (m, 3 H), 7.53–7.49 (m, 2 H), 7.32–7.28 (m, 2 H), 7.25–7.22 (m, 1 H), 7.17–7.13 (m, 3 H), 7.05 (dd, J = 8.4, 1.6 Hz, 1 H), 6.63 (d, J = 8.4 Hz, 1 H), 5.10 (d, J = 16.4 Hz, 1 H), 4.36 (d, J = 7.2 Hz, 1 H), 4.02 (d, J = 16.0 Hz, 1 H), 3.48 (d, J = 17.6 Hz, 1 H), 3.19 (dd, J = 17.6, 7.6 Hz, 1 H), 2.30 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 165.3, 138.2, 136.4, 136.0, 134.2, 132.9, 132.2, 131.2, 129.6 (2×), 128.8 (2×), 128.7 (2×), 127.1, 126.1 (2×), 115.9, 115.7, 63.1, 46.5, 31.9, 20.4. GC–MS: m/z (%) = 91 (100), 249 (95) [M – HSO2Ph]+. HRMS (ESI+): m/z [M + H]+ calcd for C23H22NO3S: 392.1315; found: 392.1316.
  • 14 1-Benzyl-6-methyl-4-propionyl-3,4-dihydroquinolin-2(1H)-one (8p) Pale yellow solid; yield 52% (48.1 mg). Rf = 0.17 (25% EtOAc–PE), mp 118–120 °C. IR (film): 2924, 2854, 1711, 1672, 1505, 1375, 1095, 1030, 803 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.31–7.28 (m, 4 H), 7.24–7.19 (m, 3 H), 7.10 (d, J = 1.6 Hz, 1 H), 6.97 (dd, J = 8.4, 1.2 Hz, 1 H), 6.81 (d, J = 8.4 Hz, 1 H), 5.21 and 5.11 (AB q, J = 16.4, 16.0 Hz, 2 H), 3.85 (dd, J = 6.0, 2.8 Hz, 1 H), 3.16 (dd, J = 16.0, 2.8 Hz, 1 H), 2.84 (dd, J = 16.0, 6.0 Hz, 1 H), 2.55–2.49 (m, 2 H), 2.31 (s, 3 H), 1.01 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 208.2, 168.8, 137.0, 136.9, 132.8, 129.5, 129.2, 128.6 (2×), 127.0, 126.7 (2×), 123.1, 116.2, 49.1, 45.5, 33.4, 33.3, 20.5, 7.6. GC–MS: m/z (%) = 91 (100), 307 (22) [M]+. HRMS (ESI+): m/z [M + H]+ calcd for C20H22NO2: 308.1645; found: 308.1645.