Semin Neurol 2001; 21(2): 189-198
DOI: 10.1055/s-2001-15264
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Spinal Muscular Atrophy

Kevin Talbot1 2 , Kay E. Davies2
  • 1Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
  • 2Department of Anatomy and Human Genetics, University of Oxford, Oxford, United Kingdom
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

The spinal muscular atrophies are a group of mostly inherited disorders selectively affecting the lower motor neuron. There is a wide degree of clinical and genetic heterogeneity that must be taken into account when giving prognostic information. Autosomal recessive childhood proximal SMA is the commonest form and is due to mutations in a gene encoding a novel protein, SMN, that appears to play a critical role in RNA metabolism but has also been shown to interact with actin-binding proteins and mediators of programmed cell death. The identification of the genetic basis of SMA has resulted in advances for prenatal diagnosis and in new insights into motor neuron biology. The chromosomal location of two of the rarer dominant forms of SMA has been found. Identification of the molecular pathophysiology of lower motor neuron syndromes can be expected to aid in the development of therapy for these disabling disorders.

REFERENCES

  • 1 Dubowitz V. Muscle Disorders in Childhood.  London: WB Saunders 1995
  • 2 Birnkrant D J, Pope J F, Martin J E, Repucci A H, Eiben R M. Treatment of type I spinal muscular atrophy with noninvasive ventilation and gastrostomy feeding.  Pediatr Neurol . 1998;  18 407-410
  • 3 Zerres K, Rudnik-Schoneborn S, Forrest E. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients.  J Neurol Sci . 1997;  146 67-72
  • 4 Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy.  J Med Genet . 1978;  15 409-413
  • 5 Burd L, Short S K, Martsolf J T, Nelson R A. Prevalence of type I spinal muscular atrophy in North Dakota.  Am J Med Genet . 1991;  41 212-215
  • 6 Ludvigsson P, Olafsson E, Hauser W A. Spinal muscular atrophy incidence in Iceland.  Neuroepidemiology . 1999;  18 265-269
  • 7 Pearn J H, Wilson J. Acute Werdnig-Hoffmann disease: acute infantile spinal muscular atrophy.  Arch Dis Child . 1973;  48 425-430
  • 8 Pascalet-Guidon M J, Bois E, Feingold J. Cluster of acute infantile spinal muscular atrophy (Werdnig-Hoffmann disease) in a limited area of Réunion Island.  Clin Genet . 1984;  26 39-42
  • 9 Fried K, Mundel G. High incidence of spinal muscular atrophy type I (Werdnig-Hoffmann disease) in the Karaite community in Israel.  Clin Genet . 1977;  12 250-251
  • 10 Stevens G, Yawitch T, Rodda J, Verhaart S, Krause A. Different molecular basis for spinal muscular atrophy in South African black patients.  Am J Med Genet . 1999;  86 420-426
  • 11 Brzustowicz L M, Lehner T, Castilla L H. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3  Nature . 1990;  344 540-541
  • 12 Gilliam T C, Brzustowicz L M, Castilla L H. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy.  Nature . 1990;  345 823-825
  • 13 Melki J, Sheth P, Abdelhak S. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators.  Lancet . 1990;  336 271-273
  • 14 Melki J, Abdelhak S, Sheth P. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q.  Nature . 1990;  344 767-768
  • 15 Lefebvre S, Burglen L, Reboullet S. Identification and characterization of a spinal muscular atrophy-determining gene.  Cell . 1995;  80 155-165
  • 16 Roy N, Mahadevan M S, McLean M. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy.  Cell . 1995;  80 167-178
  • 17 Rodrigues N R, Owen N, Talbot K. Gene deletions in spinal muscular atrophy.  J Med Genet . 1996;  33 93-96
  • 18 Wirth B, Herz M, Wetter A. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling.  Am J Hum Genet . 1999;  64 1340-1356
  • 19 Parsons D W, McAndrew P E, Iannaccone S T. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number.  Am J Hum Genet . 1998;  63 1712-1723
  • 20 Hahnen E, Schonling J, Rudnik-Schoneborn S. Missense mutations in exon 6 of the survival motor neuron gene in patients with spinal muscular atrophy (SMA).  Hum Mol Genet . 1997;  6 821-825
  • 21 Talbot K, Ponting C P, Theodosiou A M. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism?.  Hum Mol Genet . 1997;  6 497-500
  • 22 Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype.  Am J Hum Genet . 1997;  61 40-50
  • 23 Lefebvre S, Burlet P, Liu Q. Correlation between severity and SMN protein level in spinal muscular atrophy.  Nat Genet . 1997;  16 265-269
  • 24 Jackson M, Morrison K E, Al-Chalabi A, Bakker M, Leigh P N. Analysis of chromosome 5q13 genes in amyotrophic lateral sclerosis: homozygous NAIP deletion in a sporadic case.  Ann Neurol . 1996;  39 796-800
  • 25 Orrell R W, Habgood J J, de Belleroche S J, Lane R J. The relationship of spinal muscular atrophy to motor neuron disease: investigation of SMN and NAIP gene deletions in sporadic and familial ALS.  J Neurol Sci . 1997;  145 55-61
  • 26 Dubowitz V, Daniels R J, Davies K E. Olivopontocerebellar hypoplasia with anterior horn cell involvement (SMA) does not localize to chromosome 5q.  Neuromuscul Disord . 1995;  5 25-29
  • 27 Burglen L, Amiel J, Viollet L. Survival motor neuron gene deletion in the arthrogryposis multiplex congenita- spinal muscular atrophy association.  J Clin Invest . 1996;  98 1130-1132
  • 28 Zerres K, Rudnik-Schoneborn S, Forkert R, Wirth B. Genetic basis of adult-onset spinal muscular atrophy.  Lancet . 1995;  346 1162
  • 29 Burlet P, Huber C, Bertrandy S. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy.  Hum Mol Genet . 1998;  7 1927-1933
  • 30 Tizzano E F, Cabot C, Baiget M. Cell-specific survival motor neuron gene expression during human development of the central nervous system: implications for the pathogenesis of spinal muscular atrophy.  Am J Pathol . 1998;  153 355-361
  • 31 Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system.  Hum Mol Genet . 1997;  6 1961-1971
  • 32 Williams B Y, Vinnakota S, Sawyer C A. Differential subcellular localization of the survival motor neuron protein in spinal cord and skeletal muscle.  Biochem Biophys Res Commun . 1999;  254 10-14
  • 33 Francis J W, Sandrock A W, Bhide P G. Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues.  Proc Natl Acad Sci U S A . 1998;  95 6492-6497
  • 34 Braun S, Croizat B, Lagrange M C, Warter J M, Poindron P. Constitutive muscular abnormalities in culture in spinal muscular atrophy.  Lancet . 1995;  345 694-695
  • 35 Braun S, Croizat B, Lagrange M C, Poindron P, Warter J M. Degeneration of cocultures of spinal muscular atrophy muscle cells and rat spinal cord explants is not due to secreted factors and cannot be prevented by neurotrophins.  Muscle Nerve . 1997;  20 953-960
  • 36 Broccolini A, Engel W K, Askanas V. Localization of survival motor neuron protein in human apoptotic-like and regenerating muscle fibers, and neuromuscular junctions.  Neuroreport . 1999;  10 1637-1641
  • 37 Pagliardini S, Giavazzi A, Setola V. Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord.  Hum Mol Genet . 2000;  9 47-56
  • 38 Talbot K, Miguel-Aliaga I, Mohaghegh P, Ponting C P, Davies K E. Characterization of a gene encoding survival motor neuron (SMN)-related protein, a constituent of the spliceosome complex.  Hum Mol Genet . 1998;  7 2149-2156
  • 39 Fischer U, Liu Q, Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis.  Cell . 1997;  90 1023-1029
  • 40 Pellizzoni L, Charroux B, Dreyfuss G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins.  Proc Natl Acad Sci U S A . 1999;  96 11167-11172
  • 41 Charroux B, Pellizzoni L, Perkinson R A. Gemin3: a novel dead box protein that interacts with smn, the spinal muscular atrophy gene product, and is a component of gems.  J Cell Biol . 1999;  147 1181-1194
  • 42 Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins.  Cell . 1997;  90 1013-1021
  • 43 Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing.  Cell . 1998;  95 615-624
  • 44 Iwahashi H, Eguchi Y, Yasuhara N. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy.  Nature . 19997;  390 413-417
  • 45 Giesemann T, Rathke-Hartlieb S, Rothkegel M. A role for polyproline motifs in the spinal muscular atrophy protein SMN: profilins bind to and colocalize with smn in nuclear gems.  J Biol Chem . 1999;  274 37908-37914
  • 46 Blazej R G, Mellersh C S, Cork L C, Ostrander E A. Hereditary canine spinal muscular atrophy is phenotypically similar but molecularly distinct from human spinal muscular atrophy.  J Hered . 1998;  89 531-537
  • 47 Schrank B, Gotz R, Gunnersen J M. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos.  Proc Natl Acad Sci U S A . 1997;  94 9920-9925
  • 48 Hsieh-Li H M, Chang J G, Jong Y J. A mouse model for spinal muscular atrophy.  Nat Genet . 2000;  24 66-70
  • 49 Jablonka S, Schrank B, Kralewski M, Rossoll W, Sendtner M. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III.  Hum Mol Genet . 2000;  9 341-346
  • 50 Frugier T, Tiziano F, Cifuentes-Diaz C. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy.  Hum Mol Genet . 2000;  9 849-858
  • 51 Greenberg F, Fenolio K R, Hejtmancik J F. X-linked infantile spinal muscular atrophy.  Am J Dis Child . 1988;  142 217-219
  • 52 Kobayashi H, Baumbach L, Matise T C. A gene for a severe lethal form of X-linked arthrogryposis (X-linked infantile spinal muscular atrophy) maps to human chromosome Xp11.3-q11.2  Hum Mol Genet . 1995;  4 1213-1216
  • 53 Rudnik-Schoneborn S, Wirth B, Rohrig D, Saule H, Zerres K. Exclusion of the gene locus for spinal muscular atrophy on chromosome 5q in a family with infantile olivopontocerebellar atrophy (OPCA) and anterior horn cell degeneration.  Neuromuscul Disord . 1995;  5 19-23
  • 54 Bertini E, Gadisseux J L, Palmieri G. Distal infantile spinal muscular atrophy associated with paralysis of the diaphragm: a variant of infantile spinal muscular atrophy.  Am J Med Genet . 1989;  33 328-335
  • 55 Grohmann K, Wienker T F, Saar K. Diaphragmatic spinal muscular atrophy with respiratory distress is heterogeneous, and one form is linked to chromosome 11q13-q21.  Am J Hum Genet . 1999;  65 1459-1462
  • 56 Borochowitz Z, Glick B, Blazer S. Infantile spinal muscular atrophy (SMA) and multiple congenital bone fractures in sibs: a lethal new syndrome.  J Med Genet . 1991;  28 345-348
  • 57 Kelly T E, Amoroso K, Ferre M. Spinal muscular atrophy variant with congenital fractures.  Am J Med Genet . 1999;  87 65-68
  • 58 Harding A E, Thomas P K. Hereditary distal spinal muscular atrophy: a report on 34 cases and a review of the literature.  J Neurol Sci . 1980;  45 337-348
  • 59 Lander C M, Eadie M J, Tyrer J H. Hereditary motor peripheral neuropathy predominantly affecting the arms.  J Neurol Sci . 1976;  28 389-394
  • 60 Christodoulou K, Kyriakides T, Hristova A H. Mapping of a distal form of spinal muscular atrophy with upper limb predominance to chromosome 7p.  Hum Mol Genet . 1995;  4 1629-1632
  • 61 O'Sullivan D J, McLeod J G. Distal chronic spinal muscular atrophy involving the hands.  Clin Exp Neurol . 1977;  14 256-259
  • 62 Ellsworth R E, Ionasescu V, Searby C. The CMT2D locus: refined genetic position and construction of a bacterial clone-based physical map.  Genome Res . 1999;  9 568-574
  • 63 Ionasescu V, Searby C, Sheffield V C. Autosomal dominant Charcot-Marie-Tooth axonal neuropathy mapped on chromosome 7p (CMT2D).  Hum Mol Genet . 1996;  5 1373-1375
  • 64 Young I D, Harper P S. Hereditary distal spinal muscular atrophy with vocal cord paralysis.  J Neurol Neurosurg Psychiatry . 1980;  43 413-408
  • 65 Frijns C J, Van Deutekom J, Frants R R, Jennekens F G. Dominant congenital benign spinal muscular atrophy.  Muscle Nerve . 1994;  17 192-197
  • 66 Adams C, Suchowersky O, Lowry R B. Congenital autosomal dominant distal spinal muscular atrophy.  Neuromuscul Disord . 1998;  8 405-408
  • 67 van der Vleuten J A, van Ravenswaaij-Arts M C, Frijns C J. Localisation of the gene for a dominant congenital spinal muscular atrophy predominantly affecting the lower limbs to chromosome 12q23-q24.  Eur J Hum Genet . 1998;  6 376-382
  • 68 Gourie-Devi M, Suresh T G, Shankar S K. Monomelic amyotrophy.  Arch Neurol . 1984;  41 388-394
  • 69 Hirayama K. Non-progressive juvenile spinal muscular atrophy of the distal upper limb (Hirayama's disease). In: De Jong J, ed. Handbook of Neurology Amsterdam: Elsevier Science 1991: 107-120
  • 70 Uncini A, Servidei S, Delli Pizzi C. Benign monomelic amyotrophy of lower limb: report of three cases.  Acta Neurol Scand . 1992;  85 397-400
  • 71 Sobue I, Saito N, Iida M, Ando K. Juvenile type of distal and segmental muscular atrophy of upper extremities.  Ann Neurol . 1978;  3 429-432
  • 72 Robberecht W, Aguirre T, Van den Bosch L. Familial juvenile focal amyotrophy of the upper extremity (Hirayama disease): superoxide dismutase 1 genotype and activity.  Arch Neurol . 1997;  54 46-50
  • 73 Palmer H. Familial scapuloperoneal amyotrophy.  Arch Neurol Psychiatry . 1932;  28 473-477
  • 74 Davidenkow S. Scapuloperoneal amyotrophy.  Arch Neurol Psychiatry . 1939;  41 694-701
  • 75 Kaeser H E. Scapuloperoneal muscular atrophy.  Brain . 1965;  88 407-418
  • 76 Emery E S, Fenichel G M, Eng G. A spinal muscular atrophy with scapuloperoneal distribution.  Arch Neurol . 1968;  18 129-133
  • 77 DeLong R, Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features.  Arch Neurol . 1992;  49 905-908
  • 78 Isozumi K, DeLong R, Kaplan J. Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31.  Hum Mol Genet . 1996;  5 1377-1382
    >