Horm Metab Res 2004; 36(6): 387-391
DOI: 10.1055/s-2004-814567
Review
© Georg Thieme Verlag Stuttgart · New York

Genetic Dissection of Corticosteroid Receptor Function in Mice

T.  M.  Wintermantel1 , S.  Berger1 , E.  F.  Greiner1 , G.  Schütz1
  • 1Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg
Further Information

Publication History

Received 3 February 2004

Accepted without Revision 11 February 2004

Publication Date:
07 July 2004 (online)

Abstract

Functional genomic technologies, including artificial chromosome-based transgenesis and conditional gene targeting, allowed us to generate mouse models harboring genes with loss-of-function mutations, gain-of-function mutations, spatially and/or temporally restricted mutations, tissue-specific mutations, and function-selective mutations. This kind of ‘allelic series’ for corticosteroid receptors in mouse models provides a very useful resource for the molecular understanding of corticosteroid function in vivo. These models will also support the identification of steroid receptor target genes in order to define a steroid signaling cascade in molecular terms. They provide opportunities for the identification of compounds that regulate steroid receptors in a tissue-specific and function-selective manner. For example, selective glucocorticoid receptor modulators preventing receptor dimerization and DNA binding can be expected to reduce osteoporotic and/or diabetogenic side effects, but to display partial or full anti-inflammatory potential. Thus, these mouse models will help to evaluate distinct steroid receptor functions for therapeutic intervention.

References

  • 1 Beato M, Herrlich P, Schütz G. Steroid hormone receptors: Many actors in search of a plot.  Cell. 1995;  83 851-857
  • 2 Drouin J, Sun Y L, Chamberland M, Gauthier Y, De Lean A, Nemer M, Schmidt T J. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene.  Embo J. 1993;  12 (1) 145-156
  • 3 Göttlicher M, Heck S, Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action.  J Mol Med. 1998;  76 480-489
  • 4 Couse J F, Korach K S. Estrogen receptor null mice: what have we learned and where will they lead us?.  Endocr Rev. 1999;  20 (3) 358-417
  • 5 Conneely O M, Mulac-Jericevic B, DeMayo F, Lydon J P, O’Malley B W. Reproductive functions of progesterone receptors.  Recent Prog Horm Res. 2002;  57 339-355
  • 6 Matsumoto T, Takeyama K, Sato T, Kato S. Androgen receptor functions from reverse genetic models.  J Steroid Biochem Mol Biol. 2003;  85 (2 - 5) 95-99
  • 7 Cole T J, Blendy J A, Monaghan A P, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, Schutz G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.  Genes Dev. 1995;  9 (13) 1608-1621
  • 8 Berger S, Bleich M, Schmid W, Cole T J, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schütz G. Mineralocorticoid receptor knockout mice: Pathophysiology of Na+ metabolism.  Proc Natl Acad Sci USA. 1998;  95 9424-9429
  • 9 Tronche F, Kellendonk C, Reichardt H M, Schütz G. Genetic dissection of glucocorticoid receptor function in mice.  Curr Opin Genet Dev. 1998;  8 532-538
  • 10 Nagy A. Cre recombinase: The universal reagent for genome tailoring.  Genesis. 2000;  26 99-109
  • 11 Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban P C, Bock R, Klein R, Schutz G. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety.  Nat Genet. 1999;  23 (1) 99-103
  • 12 Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt H M, Steinlein P, Schütz G, Beug H. The glucocorticoid receptor is required for stress erythropoiesis.  Genes Dev. 1999;  13 2996-3002
  • 13 Reichardt H M, Kaestner K H, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W, Herrlich P, Angel P, Schütz G. DNA binding of the glucocorticoid receptor is not essential for survival.  Cell. 1998;  93 1-20
  • 14 Reichardt H M, Tuckermann J P, Gottlicher M, Vujic M, Weih F, Angel P, Herrlich P, Schutz G. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor.  Embo J. 2001;  20 (24) 7168-7173
  • 15 Wintermantel T M, Mayer A K, Schutz G, Greiner E F. Targeting mammary epithelial cells using a bacterial artificial chromosome.  Genesis. 2002;  33 (3) 125-130
  • 16 Barden N. Modulation of glucocorticoid receptor gene expression by antidepressant drugs.  Pharmacopsychiatry. 1996;  29 (1) 12-22
  • 17 Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgansberger W, Wurst W, Holsboer F, Spanagel R. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors.  Science. 2002;  296 (5569) 931-933
  • 18 Deroche-Gamonet V, Sillaber I, Aouizerate B, Izawa R, Jaber M, Ghozland S, Kellendonk C, Le Moal M, Spanagel R, Schutz G, Tronche F, Piazza P V. The glucocorticoid receptor as a potential target to reduce cocaine abuse.  J Neurosci. 2003;  23 (11) 4785-4790
  • 19 Balsalobre A, Brown S A, Marcacci L, Tronche F, Kellendonk C, Reichardt H M, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling.  Science. 2000;  289 (5488) 2344-2347
  • 20 Kellendonk C, Opherk C, Anlag K, Schütz G, Tronche F. Hepatocyte-specific expression of Cre recombinase.  Genesis. 2000;  26 151-153
  • 21 Chow J C, Ling P R, Qu Z, Laviola L, Ciccarone A, Bistrian B R, Smith R J. Growth hormone stimulates tyrosine phosphorylation of JAK2 and STAT5, but not insulin receptor substrate-1 or SHC proteins in liver and skeletal muscle of normal rats in vivo.  Endocrinology. 1996;  137 (7) 2880-2886
  • 22 Metcalf D, Greenhalgh C J, Viney E, Willson T A, Starr R, Nicola N A, Hilton D J, Alexander W S. Gigantism in mice lacking suppressor of cytokine signalling-2.  Nature. 2000;  405 (6790) 1069-1073
  • 23 Stocklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between Stat5 and the glucocorticoid receptor.  Nature. 1996;  383 (6602) 726-728
  • 24 Reichardt H M, Umland T, Bauer A, Kretz O, Schutz G. Mice with an increased glucocorticoid receptor gene dosage show enhanced resistance to stress and endotoxic shock.  Mol Cell Biol. 2000;  20 (23) 9009-9017
  • 25 Funder J W, Pearce P T, Smith R, Smith A I. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated.  Science. 1988;  242 (4878) 583-585
  • 26 Berger S, Cole T J, Schmid W, Schutz G. Analysis of glucocorticoid and mineralocorticoid signalling by gene targeting.  Endocr Res. 1996;  22 (4) 641-652
  • 27 Hubert C, Gasc J M, Berger S, Schutz G, Corvol P. Effects of mineralocorticoid receptor gene disruption on the components of the renin-angiotensin system in 8-day-old mice.  Mol Endocrinol. 1999;  13 (2) 297-306
  • 28 Bleich M, Warth R, Schmidt-Hieber M, Schulz-Baldes A, Hasselblatt P, Fisch D, Berger S, Kunzelmann K, Kriz W, Schutz G, Greger R. Rescue of the mineralocorticoid receptor knock-out mouse.  Pflugers Arch. 1999;  438 (3) 245-254

Prof. Dr. G. Schütz

Molecular Biology of the Cell I · German Cancer Research Center

Im Neuenheimer Feld 280 · 69120 Heidelberg

Phone: + 49 (6221) 42-3411

Fax: + 49 (6221) 42-3470

Email: g.schuetz@dkfz.de

    >