Diabetologie und Stoffwechsel 2019; 14(S 02): S214-S221
DOI: 10.1055/a-0898-9824
DDG-Praxisempfehlung
© Georg Thieme Verlag KG Stuttgart · New York

Diabetes, Sport und Bewegung

Katrin Esefeld
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
4   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München
,
Verena Heinicke
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
,
Stephan Kress
2   AG Diabetes und Sport der DDG
7   Medizinische Klinik Vinzentius-Krankenhaus Landau
,
Meinolf Behrens
2   AG Diabetes und Sport der DDG
8   Diabeteszentrum Minden, Minden
,
Peter Zimmer
2   AG Diabetes und Sport der DDG
,
Michael Stumvoll
3   Medizinische Klinik und Poliklinik III, Universitätsklinik Leipzig, Leipzig
,
Christian Brinkmann
2   AG Diabetes und Sport der DDG
5   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln, Köln
6   IST Hochschule Düsseldorf, Düsseldorf
,
Martin Halle
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
2   AG Diabetes und Sport der DDG
4   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München
› Author Affiliations
Further Information

Publication History

Publication Date:
29 October 2019 (online)

Bewegung ist für alle Formen des Diabetes mellitus eine der wichtigsten Maßnahmen, die Gesundheit zu erhalten. Durch Sport und Bewegung werden Anpassungs- und Reparaturmechanismen in verschiedenen Organsystemen und Zellen wie der Muskulatur, den Nerven, Gefäßen, im Immunsystem oder Gehirn ausgelöst, die helfen können, Krankheiten abzuwehren [1] [2] [3] [4].

Es muss dabei keine körperliche Höchstleistung erbracht werden. Belastungen nach dem Motto „Laufen ohne Schnaufen“ bringen bereits gute Gesundheitsergebnisse. Neben einer Bewegung von einer halben Stunde pro Tag möglichst zusätzlich zur Alltagstätigkeit wird als effektiver Ansatz auch die Ausweitung der Chancen für Bewegung im Rahmen der Alltagstätigkeiten empfohlen. Nach den Empfehlungen der American Diabetes Association (ADA) aus dem Jahr 2019 sollen sich Erwachsene mit Diabetes 150 Minuten und mehr in moderater bis hoher Intensität pro Woche bewegen. Die Bewegung sollte verteilt sein auf mindestens 3 Tage, wobei nicht mehr als 2 bewegungsarme Tage hintereinander liegen sollten. Außerdem wird empfohlen, 2- bis 3-mal pro Woche Krafttraining durchzuführen, aber nicht an aufeinanderfolgenden Tagen. Sitzphasen sollen alle 30 Minuten unterbrochen werden. Jüngere können die Trainingszeit auf 75 Minuten/Woche durch intensivere Aktivität verkürzen. Für Ältere wird 2- bis 3-mal pro Woche zusätzlich Flexibilitäts- und Gleichgewichtstraining empfohlen. Auch alternative Sportarten wie Yoga und Tai-Chi können geeignet sein. Zur Adipositasbehandlung sind Bewegungsumfänge von 200 bis 300 Minuten pro Woche und ein Energiedefizit von ca. 500 bis 750 kcal/Tag anzustreben [5].

Diese Praxisleitlinie soll die pathophysiologischen Hintergründe und therapeutischen Optionen zur Bedeutung von körperlicher Aktivität in der Therapie des Diabetes mellitus in Grundzügen umreißen und praktische Empfehlungen für die Umsetzung bei Typ-1- und Typ-2-Patienten geben.

 
  • Literatur

  • 1 Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports 2015; 25 (Suppl. 03) 1-72
  • 2 Kirchner H, Osler ME, Krook A. et al. Epigenetic flexibility in metabolic regulation: disease cause and prevention?. Trends in cell biology 2013; 23: 203-209
  • 3 Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nature reviews rheumatology 2015; 11: 86-97
  • 4 Fiuza-Luces C, Garatachea N, Berger NA. et al. Exercise is the real polypill. Physiology 2013; 28: 330-358
  • 5 ADA’s current clinical practice recommendations: lifestyle management: standards of medical care in Diabetes care 2019.
  • 6 Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in physiology education 2014; 38: 308-314
  • 7 Herbst A, Kordonouri O, Schwab KO. et al. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23251 patients. Diabetes care 2007; 30: 2098-2100
  • 8 Tonoli C, Heyman E, Roelands B. et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports medicine (Auckland, NZ) 2012; 42: 1059-1080
  • 9 Riddell MC, Gallen IW, Smart CE. et al. Exercise management in type 1 diabetes: a consensus statement. Lancet diabetes endocrinol 2017; 5: 377-390
  • 10 Roberts AJ, Taplin CE. Exercise in Youth with Type 1 Diabetes. Current pediatric reviews 2015; 11: 120-125
  • 11 Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatric diabetes 2015; 16: 242-255
  • 12 Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Current opinion in clinical nutrition and metabolic care 2015; 18: 428-433
  • 13 Garcia-Garcia F, Kumareswaran K, Hovorka R. et al. Quantifying the acute changes in glucose with exercise in type 1 diabetes: a systematic review and meta-analysis. Sports medicine (Auckland, NZ) 2015; 45: 587-599
  • 14 Lean ME, Leslie WS, Barnes AC. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster randomised trial. Lancet 2018; 391: 541-551
  • 15 Lean MEJ, Leslie WS, Barnes AC. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2 year results of the DiRECT open-label, cluster randomised trial. Lancet diabetes endocrinol 2019; 7: 344-355
  • 16 Rohling M, Herder C, Roden M. et al. Effects of Long-Term Exercise Interventions on Glycaemic Control in Type 1 and Type 2 Diabetes: a Systematic Review. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association. 2016
  • 17 Umpierre D, Ribeiro PA, Kramer CK. et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA: the journal of the American Medical Association 2011; 305: 1790-1799
  • 18 Wing RR, Bolin P, Brancati FL. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The New England journal of medicine 2013; 369: 145-154
  • 19 Knowler WC, Fowler SE, Hamman RF. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet (London, England) 2009; 374: 1677-1686
  • 20 Look AHEAD research group et al. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes & endocrinology 2014; 2: 801-809
  • 21 Colberg SR, Laan R, Dassau E. et al. Physical activity and type 1 diabetes: time for a rewire?. Journal of diabetes science and technology 2015; 9: 609-618
  • 22 Jayawardene DC, McAuley SA, Horsburgh JC. et al. Closed-loop insulin delivery for adults with type 1 diabetes undertaking high-intensity interval exercise versus moderate-intensity exercise: a randomized, crossover study. Diabetes technology & therapeutics 2017; 19: 340-348
  • 23 Breton MD, Chernavvsky DR, Forlenza GP. et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes care 2017; 40: 1644-1650
  • 24 Dovc K, Macedoni M, Bratina N. et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial. Diabetologia 2017; 60: 2157-2167
  • 25 Ding S, Schumacher M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors 2016; 16: 589
  • 26 Lunde P, Blakstad Nilsson B, Bergland A. et al. The effectiveness of smartphone apps for lifestyle improvement in noncommunicable diseases: systematic review and meta-analyses. Journal of medical internet research 2018; 20: 1-12
  • 27 Wu X, Guo X, Zhang Z. The efficacy of mobile phone apps for lifestyle modification in diabetes: systematic review and meta-analysis. JMIR Mhealth and Uhealth 2019; 7: e12297
  • 28 Yom-Tov E, Feraru G, Kozdoba M. et al. Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. Journal of medical internet research 2017; 19: e338
  • 29 Jimenez G, Lum E, Car J. Examining diabetes management apps recommended from a Google search: content analysis. JMIR Mhealth and Uhealth 2019; 7: e11848
  • 30 Pais S, Parry D, Petrova K. et al. Acceptance of using an ecosystem of mobile apps for use in diabetes clinic for self-management of gestational diabetes mellitus. Studies in health technology and informatics 2017; 245: 188-192
  • 31 Kordonouri O, Riddell MC. Use of apps for physical activity in type 1 diabetes: current status and requirements for future development. Therapeutic advances in endocrinology and metabolism 2019; 10: 1-7
  • 32 Thomas JG, Bond DS, Raynor HA. et al. Comparison of smartphone-based behavioral obesity treatment with gold standard group treatment and control: a randomized trial. Obesity 2019; 27: 572-580
  • 33 Schütte L. Digitale Selbsthilfe. Digitalisierungs- und Technologiereport Diabetes 2019. https://www.dut-report.de/wp-content/uploads/2019/01/Selbsthilfe_Schuette.pdf . Zugriff 26.05.2019
  • 34 Staiano AE, Beyl RA, Guan W. et al. Home-based exergaming among children with overweight/obesity: a randomized clinical trial. Pediatri obesity 2018; 13: 724-733
  • 35 Cooper AR, Tibbitts B, England C. et al. Potential of electric bicycles to improve the health of people with type 2 diabetes: a feasibility study. Diabetic medicine 2018; 35: 1279-1282
  • 36 Karstoft K, Winding K, Knudsen SH. et al. The effects of free-living interval- walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes care 2013; 36: 228-236
  • 37 Yang Z, Scott AC, Mao C. et al. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports medicine 2014; 44: 487-499
  • 38 van Buuren F, Horstkotte D, Mellwig KP. et al. Electrical myostimulation (EMS) improves glucose metabolism and oxygen uptake in type 2 diabetes mellitus patients – results from the EMS study. Diabetes technology & therapeutics 2015; 17: 413-419
  • 39 Robinson CC, Barreto RP, Sbruzzi G. et al. The effects of whole body vibration in patients with type 2 diabetes: a systematic review and metaanalysis of randomized controlled trials. Brazilian journal of physical therapy 2016; 20: 4-14
  • 40 Kempf K, Martin S. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients – a randomized controlled trial. BMC Endocrine disorders 2013; 13: 57