Ultraschall Med 2021; 42(02): 194-201
DOI: 10.1055/a-0999-5347
Technical Development

Web-Based GPU-Accelerated Application for Multiplanar Reconstructions from Conventional 2D Ultrasound

Webbasierte GPU-beschleunigte Anwendung für multiplanare Rekonstruktionen aus konventionellem 2D-Ultraschall
Jens Borgbjerg
Radiology, Aarhus-University-Hospital, Aarhus, Denmark
,
Arne Hørlyck
Radiology, Aarhus-University-Hospital, Aarhus, Denmark
› Author Affiliations

Abstract

Purpose In ultrasound education there is a need for interactive web-based learning resources. The purpose of this project was to develop a web-based application that enables the generation and exploration of volumetric datasets from cine loops obtained with conventional 2D ultrasound.

Materials and Methods JavaScript code for ultrasound video loading and the generation of volumetric datasets was created and merged with an existing web-based imaging viewer based on JavaScript and HTML5. The Web Graphics Library was utilized to enable hardware-accelerated image rendering.

Results The result is a web application that works in most major browsers without any plug-ins. It allows users to load a conventional 2D ultrasound cine loop which can subsequently be manipulated with on-the-fly multiplanar reconstructions as in a Digital Imaging and Communications in Medicine (DICOM) viewer. The application is freely accessible at (http://www.castlemountain.dk/atlas/index.php?page=mulrecon&mulreconPage=sonoviewer) where a demonstration of web-based sharing of generated cases can also be found.

Conclusion The developed web-based application is unique in its ability to easily perform loading of one’s own ultrasound clips and conduct multiplanar reconstructions where interactive cases can be shared on the Internet.

Zusammenfassung

Ziel In der Ultraschallausbildung besteht Bedarf an interaktiven webbasierten Lernressourcen. Ziel dieses Projekts war die Entwicklung einer webbasierten Anwendung, mit der volumetrische Datensätze aus Cine-Loops, die mit konventionellem 2D-Ultraschall erstellt wurden, generiert und untersucht werden können.

Material und Methoden Javascripts zum Laden von Ultraschallvideos und zum Erzeugen von volumetrischen Datensätzen wurden erstellt und mit einem bestehenden webbasierten Bildbetrachter auf Basis von Javascript und HTML5 zusammengeführt. Die Web-Graphics-Library wurde verwendet, um eine Hardware-beschleunigte Bildwiedergabe zu ermöglichen.

Ergebnisse Das Ergebnis ist eine Webanwendung, die ohne Plug-Ins in den meisten gängigen Browsern standardmäßig funktioniert. Sie ermöglicht dem Benutzer das Laden einer herkömmlichen 2D-Ultraschall-Cine-Loop, die anschließend mit on-the-fly-multiplanaren Rekonstruktionen wie in einem DICOM-Viewer (Digital Imaging and Communications in Medicine) bearbeitet werden kann. Die Anwendung ist frei zugänglich unter (http://www.castlemountain.dk/atlas/index.php?page=mulrecon&mulreconPage=sonoviewer). Dort ist auch eine Demonstration der webbasierten Freigabe von generierten Fällen zu finden.

Schlussfolgerung Die entwickelte webbasierte Anwendung ist einzigartig in ihrer Fähigkeit, auf einfache Weise eigene Ultraschallclips zu laden und multiplanare Rekonstruktionen durchzuführen, wobei interaktive Fälle im Internet geteilt werden können.



Publication History

Received: 17 April 2019

Accepted: 01 August 2019

Article published online:
05 September 2019

© 2019. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nicholls D, Sweet L, Hyett J. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set. J Ultrasound Med 2014; 33: 1349-1352
  • 2 Stenman C, Jamil S, Thorelius L. et al. Do radiologists agree on findings in radiographer-acquired sonographic examinations?. J Ultrasound Med 2013; 32: 513-551
  • 3 Dormagen JB, Gaarder M, Drolsum A. Standardized cine-loop documentation in abdominal ultrasound facilitates offline image interpretation. Acta radiol 2015; 56: 3-9
  • 4 Frank SJ, Kurian J. Three-Dimensional Sonography of Biliary Tract Disorders. Journal of Ultrasound in Medicine 2016; 35: 91-804
  • 5 Bowra J, Dawson M, Goudie A. et al. Sounding out the future of ultrasound education. Ultrasound 2015; 23: 48-52
  • 6 van der Gijp A, Ravesloot CJ, van der Schaaf MF. et al. Volumetric and two-dimensional image interpretation show different cognitive processes in learners. Acad Radiol 2015; 22: 632-639
  • 7 Colucci PG, Kostandy P, Shrauner WR. et al. Development and utilization of a web-based application as a robust radiology teaching tool (radstax) for medical student anatomy teaching. Acad Radiol 2015; 22: 247-255
  • 8 Trelease RB. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education. Anat Sci Educ 2016; 9: 583-602
  • 9 Borgbjerg J. MULRECON: A Web-based Imaging Viewer for Visualization of Volumetric Images. Curr Probl Diagn Radiol 2018;
  • 10 Mozaffari MH, Lee WS. Freehand 3-D Ultrasound Imaging: A Systematic Review. Ultrasound Med Biol 2017; 43: 2099-2124
  • 11 Fenster A, Parraga G, Bax J. Three-dimensional ultrasound scanning. Interface Focus 2011; 1: 503-519
  • 12 Cameron D. A Software Engineer Learns HTML5, Javascript & Jquery (CreateSpace, 2013).
  • 13 Ji S, Roberts DW, Hartov A. et al. Real-time interpolation for true 3-dimensional ultrasound image volumes. J Ultrasound Med 2011; 30: 243-252
  • 14 Kahn Jr CE, Ehlers KC, Wood BP. Radiologists’ preferences for just-in-time learning. J Digit Imaging 2006; 19: 202-206
  • 15 Lewiss RE, Hoffmann B, Beaulieu Y. et al. Point-of-care ultrasound education: the increasing role of simulation and multimedia resources. J Ultrasound Med 2014; 33: 27-32
  • 16 Tutschek B. Simple virtual reality display of fetal volume ultrasound. Ultrasound Obstet Gynecol 2008; 32: 906-909
  • 17 Tutschek B, Pilu G. Pocket Brain, an interactive, web-based ultrasound atlas of normal and abnormal fetal brain development. Ultrasound Obstet Gynecol 2017; 49: 431-432
  • 18 Niazi AU, Tait G, Carvalho JCA. et al. The use of an online three-dimensional model improves performance in ultrasound scanning of the spine: a randomized trial. Can J Anaesth 2013; 60: 458-464
  • 19 Virtual TEE: Toronto, Standard Views, Cardiac, Transesophageal Echocardiography, 3D Heart Model, TOE, Pathology. Available at: http://pie.med.utoronto.ca/TEE/index.htm. (Accessed: 24th October 2018)
  • 20 Website. Available at: https://money.cnn.com/2017/07/25/technology/adobe-killing-flash/. (Accessed: 24th October 2018)
  • 21 European Society of Radiology (ESR). The new EU General Data Protection Regulation: what the radiologist should know. Insights Imaging 2017; 8: 295-299
  • 22 HTML5 Video Converter online: Any video to MP4 Webm OGV. Available at: https://converterpoint.com. (Accessed: 24th October 2018)
  • 23 Easy HTML5 Video: HTML 5 Video Converter. Available at: http://easyhtml5video.com/. (Accessed: 24th October 2018)
  • 24 Prevost R, Salehi M, Jagoda S. et al. 3D freehand ultrasound without external tracking using deep learning. Med Image Anal 2018; 48: 187-202