Synlett 2022; 33(06): 563-568
DOI: 10.1055/a-1729-6586
letter

Copper(I) Iodide Promoted [3+2]-Cycloaddition/Oxidation to Construct Pyrrolo[2,1-a]isoquinolinoquinones from Naphthoquinones and Tetrahydroisoquinolines

Zihua Yu
,
Xue Tang
,
Chenxi Huang
,
Yehan Shang
,
Qing Ye
,
Liang Han
,
Yujin Li
This work was supported by the Natural Science Foundation of China (21606201, 21702184), the National Natural Science Foundation of Zhejiang (LY13B020016, LY18H300009), and R&D projects commissioned by Guangzhou Gonghe Pharmaceutical Technology Co., Ltd. (HG-[2014]048).


Abstract

A copper-catalyzed, three-component, one-pot, 1,3-dipole cycloaddition/oxidation has been developed to construct pyrrolo[2,1-a]isoquinolinoquinone derivatives, with environmentally friendly oxygen as the oxidant. The pyrrolo[2,1-a]isoquinolinoquinone products were obtained from naturally available tetrahydroisoquinolines, 1,4-naphthoquinones, and benzaldehydes in medium yields.

Supporting Information



Publication History

Received: 10 December 2021

Accepted after revision: 03 January 2022

Accepted Manuscript online:
03 January 2022

Article published online:
10 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Naskar S, Banerjee M, Hazra A, Mondal S, Maity A, Paira R, Sahu KB, Saha P, Banerjee S, Mondal NB. Tetrahedron Lett. 2011; 52: 1527
    • 1b Voskressensky LG, Borisova TN, Matveeva MD, Khrustalev VN, Titov AA, Aksenov AV, Dyachenko SV, Varlamov AV. Tetrahedron Lett. 2017; 58: 877
    • 1c Borthakur S, Sarma B, Gogoi S. Org. Lett. 2019; 21: 7878
    • 2a Davis RA, Carroll AR, Pierens GK, Quinn RJ. J. Nat. Prod. 1999; 62: 419
    • 2b Dittrich N, Pilkington LI, Leung E, Barker D. Tetrahedron 2017; 73: 1881
  • 3 Colligs V, Hansen SP, Imbri D, Seo E.-J, Kadioglu O, Efferth T, Opatz T. Bioorg. Med. Chem. 2017; 25: 6137
  • 4 Li L, Jiao Y, Jin T, Sun H, Li S, Jin C, Hu S, Ji J, Xiang L. Life Sci. 2017; 191: 211
  • 5 Zhang F, Simpkins NS, Blake AJ. Org. Biomol. Chem. 2009; 7: 1963
    • 6a Wu TR, Chong JM. J. Am. Chem. Soc. 2006; 128: 9646
    • 6b Meyer N, Opatz T. Eur. J. Org. Chem. 2006; 3997
    • 6c Koohgard M, Hosseinpour Z, Hosseini-Sarvari M. Tetrahedron 2021; 86: 132166
    • 7a Huang H.-M, Li Y.-J, Ye Q, Yu W.-B, Han L, Jia J.-H, Gao J.-R. J. Org. Chem. 2014; 79: 1084
    • 7b Koohgard M, Hosseini-Sarvari M. J. Photochem. Photobiol., A 2021; 404: 112877
    • 7c Zhou W, Liu H, Guo Y, Gu Y, Han J, Chen J, Deng H, Shao M, Zhang H, Cao W. J. Fluorine Chem. 2019; 222: 51
    • 7d Yang W.-W, Ye Y.-F, Chen L.-L, Fu J.-Y, Zhu J.-Y, Wang Y.-B. J. Org. Chem. 2021; 86: 169
    • 7e Wang Q, Yuan T, Liu Q, Xu Y, Xie G, Lv X, Ding S, Wang X, Li C. Chem. Commun. 2019; 55: 8398
    • 7f Wang L, Ma T, Qiao M, Wu Q, Shi D, Xiao W. Synthesis 2019; 51: 522
    • 7g Fujiya A, Tanaka M, Yamaguchi E, Tada N, Itoh A. J. Org. Chem. 2016; 81: 7262
    • 7h Zheng KL, Zhuang S, You M, Shu W, Wu A, Wu Y. ChemistrySelect 2017; 2: 10762
  • 8 Shen Y.-M, Grampp G, Leesakul N, Hu H.-W, Xu J.-H. Eur. J. Org. Chem. 2007; 3718
  • 9 Chen L, Xu M.-H. Adv. Synth. Catal. 2009; 351: 2005
    • 10a Yu C, Zhang Y, Zhang S, Li H, Wang W. Chem. Commun. 2011; 47: 1036
    • 10b Huang H.-M, Huang F, Li Y.-J, Jia J.-H, Ye Q, Han L, Gao J.-R. RSC Adv. 2014; 4: 27250
    • 10c Xu Y.-W, Wang J, Wang G, Zhen L. J. Org. Chem. 2021; 86: 91
  • 11 Babu SA, Rajalekshmi AR, Nitha PR, Omanakuttan VK, Rahul P, Varughese S, John J. Org. Biomol. Chem. 2021; 19: 1807
  • 12 Xie Z, Li F, Niu L, Li H, Zheng J, Han R, Ju Z, Li S, Li D. Org. Biomol. Chem. 2020; 18: 6889
  • 13 Yu Y, Liu Y, Liu A, Xie H, Li H, Wang W. Org. Biomol. Chem. 2016; 14: 7455
    • 14a Qin G, Wang Y, Huang H. Org. Lett. 2017; 19: 6352
    • 14b Corpas J, Ponce A, Adrio J, Carretero JC. Org. Lett. 2018; 20: 3179
    • 14c Li C.-d, Tang X, He X.-l, Xue S, Xu J.-h, Li Y.-j. Tetrahedron 2020; 76: 131347
    • 14d Lin Z.-q, Li C.-d, Zhou Z.-c, Xue S, Gao J.-r, Ye Q, Li Y.-j. Synlett 2019; 30: 1442
    • 14e Lin Z.-q, Li C.-d, Su J.-y, Niu W.-j, Gao J.-r, Li Y.-J. Can. J. Chem. 2020; 98: 690
  • 15 Haldón E, Nicasio MC, Pérez PJ. Org. Biomol. Chem. 2015; 13: 9528
    • 16a Guo L, Zhao W, Li M, Dong S, Gong J, Chen S. Appl. Organomet. Chem. 2019; 33: e5003
    • 16b Liu Y, Wan J.-P. Org. Biomol. Chem. 2011; 9: 6873
    • 17a Nordmann G, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 4978
    • 17b You H, Vegi S, Lagishetti C, Chen S, Reddy RS, Yang X, Guo J, Wang C, He Y. J. Org. Chem. 2018; 83: 4119
    • 17c Altman RA, Shafir A, Choi A, Lichtor PA, Buchwald SL. J. Org. Chem. 2008; 73: 284
    • 17d Fan M, Zhou W, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2016; 55: 6211
    • 17e Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
  • 18 Cacchi S, Fabrizi G, Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
  • 19 Chen X, Lu C.-W, Huang Y, McGrath DV. Tetrahedron 2015; 71: 9154
  • 20 Kamboj P, Dutt S, Chakroborty S, Tyagi V. Tetrahedron Lett. 2019; 60: 151162
  • 21 Gang M.-Y, Liu J.-Q, Wang X.-S. Tetrahedron 2017; 73: 4698
  • 22 Nelina-Nemtseva JI, Gulevskaya AV, Suslonov VV, Misharev AD. Tetrahedron 2018; 74: 1101
    • 23a Xu H, Xing M, Huang F, Li Y, Jia J, Gao J.-R. Org. Lett. 2015; 17: 3690
    • 23b Xing M.-M, Xin M, Shen C, Gao J.-R, Jia J.-H, Li Y.-J. Tetrahedron 2016; 72: 4201
    • 23c Huang H.-M, Gao J.-R, Ye Q, Yu W.-B, Sheng W.-J, Li Y.-J. RSC Adv. 2014; 4: 15526
  • 24 Nekkanti S, Kumar NP, Sharma P, Kamal A, Nachtigall FM, Forero-Doria O, Santos LS, Shankaraiah N. RSC Adv. 2016; 6: 2671
  • 25 8-Phenyl-5,6-dihydrobenzo[5,6]isoindolo[1,2-a]isoquinoline-9,14-dione (4a); Typical Procedure A mixture of 1,2,3,4-tetrahydroisoquinoline (1a; 0.6 mmol, 0.0799 g), PhCHO (2a; 0.6 mmol, 0.0637 g), 4 Å MS (~0.2 g), CuI (0.5 mmol, 0.0952 g), and BzOH (0.1 mmol, 0.0122 g) in DCE (2.0 mL) was stirred in a 25 mL reaction tube at 50 °C for 2–3 h under O2 (balloon). 1,4-Naphthoquinone (3a; 0.5 mmol, 0.0791 g) was then added, and the reaction was continued for 24 h. When the reaction was complete (TLC), the mixture was poured into H2O (50 mL) and extracted with CH2Cl2 (3 × 50 mL). The combined organic layer was dried (MgSO4), and the solvent was removed with a rotary evaporator. Purification of the crude product by column chromatography [silica gel, CH2Cl2–PE (1:1)] gave a yellow solid; yield: 0.1378 g (73%); mp 240–242 °C. 1H NMR (500 MHz, CDCl3): δ = 9.09 (d, J = 7.8 Hz, 1 H), 8.30 (dd, J = 7.6, 1.1 Hz, 1 H), 8.13 (dd, J = 7.5, 1.2 Hz, 1 H), 7.64 (m, 2 H), 7.54–7.47 (m, 5 H), 7.44 (t, J = 7.4 Hz, 1 H), 7.33 (m, 1 H), 7.22 (t, J = 7.0 Hz, 1 H), 3.95–3.88 (m, 2 H), 2.97 (t, J = 6.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 180.14, 180.10, 137.86, 136.38, 136.24, 135.30, 134.31, 133.79, 132.91, 132.72, 130.48 (2 C), 129.52, 129.48, 128.61, 128.42 (2 C), 127.42, 127.34, 127.25, 127.11, 126.36, 119.53, 117.48, 42.29, 29.54. HRMS (ESI): m/z [M + Na]+ calcd for C26H17NNaO2: 398.1157; found: 398.1149.