Synlett 2022; 33(06): 546-550
DOI: 10.1055/a-1755-1754
letter

Electrophilic (Ethoxycarbonyl)difluoromethylthiolation Using Difluoroalkyl Sulfonium Salts

Weijian Liang
a   College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Kaixiao Li
b   College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Lijiang Zhou
a   College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
,
Yage Zhang
a   College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. of China
› Author Affiliations
This work was supported by Zhejiang Normal University.


Abstract

We report a simple protocol for (ethoxycarbonyl)difluoromethylthiolation of nucleophilic compounds using a difluoroalkyl sulfonium salt which can be prepared in situ via Tf2O-triggered electrophilic activation of a benzyl difluoroalkyl sulfoxide. With the protocol, difluoroalkylthiolated arenes, heteroarenes, α-difluoroalkylthiolated carbonyl compounds, etc. were obtained smoothly with good to excellent yields. Merits of the reaction include the readily available difluoroalkylthiolation reagent and substrates, mild conditions, and excellent regioselectivity.

Supporting Information



Publication History

Received: 26 December 2021

Accepted after revision: 30 January 2022

Accepted Manuscript online:
30 January 2022

Article published online:
21 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Chambers RD. Fluorine in Organic Chemistry . Blackwell; Oxford: 2004
    • 1b Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications 2004
    • 1c Uneyam K. Organofluorine Chemistry . Blackwell; Oxford: 2006
    • 1d Li M, Xue X.-S, Cheng J.-P. Acc. Chem. Res. 2020; 53: 182
    • 1e Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 2a Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
    • 2b Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 2c Mei H, Han J, White S, Graham DJ, Izawa K, Sato T, Fustero S, Meanwell NA, Soloshonok VA. Chem. Eur. J. 2020; 26: 11349
    • 2d Johnson BM, Shu YZ, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63: 6315
    • 2e Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 2f Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 2g Ojima I. J. Org. Chem. 2013; 78: 6358
    • 2h Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2i Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 3a Wu J, Shen Q. Acc. Chem. Res. 2021; 54: 2946
    • 3b Xiao X, Zheng Z.-T, Li T, Zheng J.-L, Tao T, Chen L.-M, Gu J.-Y, Yao X, Lin J.-H, Xiao J.-C. Synthesis 2020; 52: 197
    • 3c Pannecoucke X, Besset T. Org. Biomol. Chem. 2019; 17: 1683
    • 4a Xiong H.-Y, Pannecoucke X, Besset T. Chem. Eur. J. 2016; 22: 16734
    • 4b Ismalaj E, Le Bars D, Billard T. Angew. Chem. Int. Ed. 2016; 55: 4790
    • 4c Xiong H.-Y, Bayle A, Pannecoucke X, Besset T. Angew. Chem. Int. Ed. 2016; 55: 13490
    • 4d Yao R, Chen W, Shen Q. Chin. J. Org. Chem. 2021; 41: 2686
    • 5a Shen F, Zhang P, Lu L, Shen Q. Org. Lett. 2017; 19: 1032
    • 5b Ismalaj E, Glenadel Q, Billard T. Eur. J. Org. Chem. 2017; 14: 1911
    • 5c Petit-Cancelier F, Couve-Bonnaire S, Besset T. Tetrahedron 2021; 98: 132446
    • 5d Xu L, Wang H, Zheng C, Zhao G. Tetrahedron 2017; 73: 6057
    • 5e Hugenberg V, Haufe GJ. Fluorine Chem. 2010; 131: 942
    • 5f Gouault S, Guerin C, Lemoucheux L, Lequeux T, Pommelet J.-C. Tetrahedron Lett. 2003; 44: 5061
    • 6a Hamashima T, Mori Y, Sawada K, Kasahara Y, Murayama D, Kamei Y, Okuno H, Yokoyama Y, Suzuki H. Chem. Pharm. Bull. 2012; 61: 292
    • 6b Becht J.-M, Wagner A, Mioskowski C. J. Org. Chem. 2003; 68: 5758
    • 6c Jain S, Shukla A, Mukhopadhyay A, Suryawanshi SN, Bhakuni DS. Synth. Commun. 1990; 20: 1315
    • 6d Muchowski JM, Galeazzi E, Greenhouse R, Guzman A, Perez V, Ackerman N, Ballaron SA, Rovito JR, Tomolonis AJ, Young JM. J. Med. Chem. 1989; 32: 1202
    • 6e Zhang L.-Y, Wu Y.-H, Wang N.-X, Gao X.-W, Yan Z, Xu B.-C, Liu N, Wang B.-Z, Xing Y. Eur. J. Org. Chem. 2021; 1446
  • 7 Fernandez-Salas J, Pulis PA, Procter DJ. Chem. Commun. 2016; 52: 12364
  • 8 Wang D, Carlton CG, Tayu M, McDouall JJ. W, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
    • 9a Landelle G, Panossian A, Leroux FR. Curr. Top. Med. Chem. 2014; 14: 941
    • 9b Shao X, Xu C, Lu L, Shen Q. Acc. Chem. Res. 2015; 48: 1227
    • 9c Chachignon H, Cahard D. Chin. J. Chem. 2016; 34: 445
    • 10a Sánchez-Obregón R, Salgado F, Ortiz B, Díaz E, Yuste F, Walls F, García Ruano JL. Tetrahedron 2007; 63: 10521
    • 10b Volonterio A, Bravo P, Pesenti C, Zanda M. Tetrahedron Lett. 2001; 42: 3985
    • 10c Crucianelli M, Bravo P, Arnone A, Corradi E, Meille SV, Zanda M. J. Org. Chem. 2000; 65: 2965
    • 10d Arnone A, Bravo P, Capelli S, Fronza G, Meille SV, Zanda M. J. Org. Chem. 1996; 61: 3375
    • 10e Beeley NR. A, Harwood LM, Hedger PC. J. Chem. Soc., Perkin Trans. 1 1994; 2245
    • 10f Uchida Y, Kozuka S. J. Chem. Soc., Chem. Commun. 1981; 510
    • 11a Chen YH, Wen S, Tian QY, Zhang YQ, Cheng GL. Org. Lett. 2021; 23: 7905
    • 11b Šiaučiulis M, Ahlsten N, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 8779
    • 11c Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
  • 12 Typical Difluoroalkylthiolation Procedure To a solution of indole 1b (39 mg, 0.2 mmol) and sulfoxide 2 (79 mg, 0.3 mmol) in MeCN (2.0 mL) was added trifluoromethanesulfonic anhydride (Tf2O, 50 μL, 0.3 mmol) at 0 °C. After stirring for 1 h, diethylamine (43 mg, 0.6 mmol) was added. The resulted reaction mixture was then gradually warmed to rt and kept stirring for 12 h. After that, the mixture was passed through a short silica gel column and concentrated under vacuum. The obtained residue was further purified by flash chromatography on silica gel (eluent: PE/EtOAc, 40:1) affording product 3b as light yellow oil (47.5 mg, 68%). Characterization Data for 3b 1H NMR (600 MHz, CDCl3): δ = 8.80 (s, 1 H), 7.86 (s, 1 H), 7.42 (d, J = 2.2 Hz, 1 H), 7.32 (d, J = 8.6 Hz, 1 H), 7.21 (d, J = 8.6, 1 H), 4.20 (q, J = 7.2 Hz, 2 H), 1.25 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (151 MHz, CDCl3): δ = 162.28 (t, J = 32.9 Hz), 134.82, 134.20, 131.55, 126.40, 122.00, 119.61 (t, J = 287.3 Hz), 115.08, 113.38, 95.32, 63.88, 13.85 ppm. 19F NMR (565 MHz, CDCl3): δ = –84.25 (s) ppm. IR (neat): 3338, 3111, 2996, 2919, 1747, 1305, 1292, 1121, 1090, 728, 605 cm–1. HRMS (ESI-TOF): m/z calcd for C12H10F2NO2SBrNa [M + Na+]: 371.9476; found: 371.9460.