Subscribe to RSS
DOI: 10.1055/a-1780-1691
Reactions of α-Phenylglyoxylic Acids with ortho-Functionalized Anilines in Deep Eutectic Solvents: Selective Syntheses of 3-Aryl-2H-benzo[b][1,4]oxazin-2-ones, 2-Arylbenzothiazoles, and 3-Arylquinoxalin-2(1H)-ones
We thank the Science and Technology Project of Jiangxi (No. 20192BBH80012) for financial support.
Abstract
α-Phenylglyoxylic acid is a novel cyclization reagent. In this study, three cyclization products were synthesized by the reaction of α-phenylglyoxylic acids with ortho-functionalized anilines in deep eutectic solvents (DES). The five-membered-ring-formation products, the 2-arylbenzothiazoles, with a highest yield of 88%, were obtained by the reaction between 0.30 mmol of an o-aminothiophenol and 0.30 mmol of an α-phenylglyoxylic acid in choline chloride (ChCl)/d-(–)-tartaric acid DES at 60 °C for 0.5 h. The six-membered-ring-formation products, 3-aryl-2H-benzo[b][1,4]oxazin-2-one derivatives, were obtained in yields up to 99% by the reaction between 0.30 mmol of an o-aminophenol and 0.60 mmol of an α-phenylglyoxylic acid in ChCl/urea DES at 80 °C for 2.0 h. In the reaction between 0.30 mmol of o-phenylenediamine and 0.45 mmol of an α-phenylglyoxylic acid in ChCl/anhydrous tin(II) chloride DES at 70 °C for 1.5 h, the six-membered-ring-formation products, 3-arylquinoxalin-2(1H)-one derivatives, were synthesized, with a highest yield of 96%. This cyclization reaction occurred without the addition of other catalysts, and the title compounds were obtained with good yields under mild conditions.
Key words
selective cyclization reaction - deep eutectic solvent - α-phenylglyoxylic acids - ortho-functionalized anilinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1780-1691.
- Supporting Information
Publication History
Received: 03 January 2022
Accepted after revision: 23 February 2022
Accepted Manuscript online:
23 February 2022
Article published online:
17 March 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Quin LD, Tyrell JA. Fundamentals of heterocyclic chemistry: importance in nature and in the synthesis of pharmaceuticals, 1st ed. Wiley-VCH; Weinheim: 2010
- 2 Alvarez-Builla J, Vaquero JJ, Barluenga J. Modern heterocyclic chemistry, 1st ed. Wiley-VCH; Weinheim: 2010
- 3 Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315
- 4 Vaitilingam B, Nayyar A, Palde PB, Monga V, Jain R, Kaur S, Singh PP. Bioorg. Med. Chem. 2004; 12: 4179
- 5 Dey S, Efimov A, Giri C, Rissanen K, Lemmetyinen H. Eur. J. Org. Chem. 2011; 6226
- 6 Li HX, Xie ZB, Liu LS, Lan J, Hu ZY, Le ZG. Chin. J. Org. Chem. 2019; 39: 2632
- 7 Xie ZB, Zhang SG, Jiang GF, Sun DZ, Le ZG. Green Chem. Lett. Rev. 2015; 8: 95
- 8 Lan J, Le ZG, Li HX, Meng J, Gong BZ, Xie ZB. Mol. Catal. 2020; 498: 111261
- 9 Cho Y, Lee C, Cheon C.-H. Tetrahedron 2013; 69: 6565
- 10 Zhao N, Liu L, Wang F, Li J, Zhang W. Adv. Synth. Catal. 2014; 356: 2575
- 11 Qian X, Li S, Song J, Xu H. ACS Catal. 2017; 7: 2730
- 12 Wang J, Li J, Huang J, Zhu Q. J. Org. Chem. 2016; 81: 3017
- 13 Gao M, Li J, Zhang S, Chen L, Li Y, Dong Z. J. Org. Chem. 2020; 85: 493
- 14 Bouchet LM, Heredia AA, Argüello JE, Schmidt LC. Org. Lett. 2020; 22: 610
- 15 Urzúa JI, Contreras R, Salas CO, Tapia RA. RSC Adv. 2016; 6: 82401
- 16 Chaudhari C, Siddiki SM. A. H, Shimizu KI. Tetrahedron Lett. 2015; 56: 4885
- 17 Shi F, Tan W, Zhang H, Li M, Ye Q, Ma G, Tu S, Li G. Adv. Synth. Catal. 2013; 355: 3715
- 18 Nguyen OT. K, Phan AL. T, Phan PT, Nguyen VD, Truong T, Le NT. H, Le DT, Phan NT. S. ChemistrySelect 2018; 3: 879
- 19 Ebersol C, Rocha N, Penteado F, Silva MS, Hartwig D, Lenardão EJ, Jacob RG. Green Chem. 2019; 21: 6154
- 20 Huang J, Chen W, Liang J, Yang QF. Y, Chen M.-W, Peng Y. J. Org. Chem. 2021; 86, 14866
- 21 Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Eur. J. Org. Chem. 2018; 4113
- 22 Yin K, Zhang R. Org. Lett. 2017; 19: 1530
- 23 Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org. Biomol. Chem. 2017; 15: 8929
- 24 Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org. Lett. 2018; 20: 7125
- 25 Hu M, Fan J, Li H, Song K, Wang S, Cheng C, Peng X. Org. Biomol. Chem. 2011; 9: 980
- 26 Li X, Liu N, Zhang H, Knudson SE, Slayden RA, Tonge PJ. Bioorg. Med. Chem. Lett. 2010; 20: 6306
- 27 Sengupta SK, Trites DH, Madhavarao MS, Beltz WR. J. Med. Chem. 1979; 22: 797
- 28 Chilin A, Confente A, Pastorini G, Guiotto A. Eur. J. Org. Chem. 2002; 1937
- 29 Wang H, Yang H, Li Y, Duan X.-H. RSC Adv. 2014; 4: 8720
- 30 Yavari I, Souri S, Sirouspour M, Djahaniani H. Synthesis 2006; 3243
- 31 Yan S, Ye L, Liu M, Chen J, Ding J, Gao W, Huang X, Wu H. RSC Adv. 2014; 4: 16705
- 32 Dugoni GC, Sacchetti A, Mele A. Org. Biomol. Chem. 2020; 18: 8395
- 33 Kalla RM. N, Kim I. Mol. Catal. 2019; 473: 110396
- 34 Milker S, Pätzold M, Bloh JZ, Holtmann D. Mol. Catal. 2019; 466: 70
- 35 Calvo-Flores FG, Mingorance-Sanchez C. ChemistryOpen 2021; 10: 815
- 36 Peng F, Chen Q.-S, Li F.-Z, Ou X.-Y, Zong M.-H, Lou W.-Y. Mol. Catal. 2020; 484: 110773
- 37 Smith EL, Abbott AP, Ryder KS. Chem. Rev. 2014; 114: 11060
- 38 Zhang QH, Vigier KD, Royer S, Jerome F. Chem. Soc. Rev. 2012; 41: 7108
- 39 Liu P, Hao JW, Mo LP, Zhang ZH. RSC Adv. 2015; 5: 48675