Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(14): 3298-3306
DOI: 10.1055/a-1792-9930
DOI: 10.1055/a-1792-9930
paper
Rhodium(III)-Catalyzed Synthesis of Quinazolin-4(3H)-ones with N-Methoxyamides as Synthesis Reagents
This work was supported by Natural Science Foundation of China (Nos. 21772139, 22171197), the Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions (21KJA150002), National local joint engineering laboratory to functional adsorption material technology for the environmental protection (SDGC2121) and the PAPD Project. The project was also supported by the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.
Abstract
A practical method to synthesize quinoxalinones via intra/intermolecular amination using rhodium as the catalyst was developed. A wide variety of quinoxalinones were prepared from N-methoxybenzamides in moderate to excellent yields. Gram-scale reactions were also achieved, highlighting the synthetic importance of this new transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1792-9930.
- Supporting Information
Publication History
Received: 22 December 2021
Accepted after revision: 09 March 2022
Accepted Manuscript online:
09 March 2022
Article published online:
25 April 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
- 2 Niculescu-Duvaz I. Curr. Opin. Investig. Drugs. 2001; 2: 693
- 3 Grover G, Kini SG. Eur. J. Med. Chem. 2006; 41: 256
- 4 Alagarsamy V, Pathak US. Med. Chem. 2007; 15: 3457
- 5 Ouahrouch A, Taourirte M, Engels JW, Benjelloun S, Lazrek HB. Molecules 2014; 19: 3638
- 6 Zhou J, Fang J. J. Org. Chem. 2011; 76: 7730
- 7 Roy BC, Samim SA, Panja D, Kundu S. Catal. Sci. Technol. 2019; 9: 6002
- 8 Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
- 9 Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
- 10a Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
- 10b Hyster TK, Ruhl KE, Rovis T. J. Am. Chem. Soc. 2013; 135: 5364
- 10c Hyster TK, Dalton DM, Rovis T. Chem. Sci. 2015; 6: 254
- 11a Patureau FW, Besset T, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1064
- 11b Wang H, Grohmann C, Nimphius C, Glorius F. J. Am. Chem. Soc. 2012; 134: 19592
- 11c Yu D, Azambuja F, Gensch T, Daniliuc G, Glorius G. Angew. Chem. Int. Ed. 2014; 53: 9650
- 12a Ackermann L, Lygin AV, Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
- 12b Ackermann L, Fenner S. Org. Lett. 2011; 13: 6548
- 12c Huang H, Nakanowatari S, Ackermann L. Org. Lett. 2017; 19: 4620
- 13a Ju G, Li G, Qian G, Zhang J, Zhao Y. Org. Lett. 2019; 21: 7333
- 13b Ju G, Tu G, Zhao Y. Synthesis 2021; 53: 3699
- 14 Xiong H, Xu S, Sun S, Cheng J. Org. Chem. Front. 2018; 5: 2880
- 15 Zhou C, Zhao J, Guo W, Jiang J, Wang J. Org. Lett. 2019; 21: 9315
- 16 Selvakumar N, Reddy BY, Azhagan AM, Khera MK, Babu JM, Iqbal J. Tetrahedron Lett. 2003; 44: 7065
- 17 Xu X, Zhou G, Ju G, Wang D, Li B, Zhao Y. Chin. Chem. Lett. 2021; 33: 847
- 18 Cheng R, Guo T, Zhang D, Du Y, Zhao K. Synthesis 2013; 45: 2998
- 19 Feng Y, Li Y, Cheng G, Wang L, Cui C. J. Org. Chem. 2015; 80: 7099