Subscribe to RSS
DOI: 10.1055/a-1838-5726
Polycaprolacton/Polylactid-Membran kann Laminektomie-induziertes Wachstum von CGRP- und SP-immunpositiven Nervenfasern in der Dura mater lumbalis von Ratten nicht verhindern
Article in several languages: deutsch | EnglishZusammenfassung
Hintergrund Mechanismen und Prävention des Failed-Back-Surgery-Syndroms sind im klinischen Kontext kaum bekannt. Tierexperimentell konnte gezeigt werden, dass Laminektomien das Wachstum von mutmaßlich nozizeptiven peptidergen Afferenzen in der Dura mater lumbalis von Ratten induziert.
Ziel Evaluierung, ob die postoperative Anwendung einer Polycaprolacton-Polylactid-Membran (Mesofol) die sensorische Hyperinnervation hemmt.
Material/Methoden Erwachsene Lewis-Ratten wurden in 3 Gruppen unterteilt: Kontrolle (keine Manipulation), Laminektomie und Laminektomie + Mesofol. Sechs Wochen postoperativ wurden die Durae entfernt, CGRP- und SP-haltige Afferenzen immunhistochemisch markiert und deren Innervierungsdichte bestimmt.
Ergebnisse In den Kontrollen wurden die CGRP- und SP-positiven Neurone überwiegend in den ventralen, jedoch nur spärlich in den dorsalen Abschnitten der jeweiligen Dura gefunden. Nach Laminektomie nahm ventral die Anzahl der immunpositiven Afferenzen signifikant zu, was in einem dichten Netzwerk von Nervenfasern resultierte. In den dorsalen Regionen wurde ebenfalls eine Zunahme immunpositiver Nervenfasern sowie neuronales Aussprossen und Wachstum beobachtet. Das Bedecken der Durae mit Mesofol nach Laminektomie hatte keinen signifikanten Einfluss auf das Nervenfaserwachstum.
Schlussfolgerung Die Verwendung von Mesofol konnte den Laminektomie-induzierten Dichteanstieg der peptidergen Afferenzen weder verhindern noch signifikant herabsetzen.
Schlüsselwörter
Laminektomie - biologisch abbaubare Membran - Mesofol - CGRP-/SP-immunpositive Nervenfasern - Schmerzen nach RückenoperationPublication History
Received: 22 February 2022
Accepted: 26 April 2022
Article published online:
01 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Wilkinson HA. The failed back syndrome: etiology and therapy. 2. New York: Springer; 1992
- 2 BenDebba M, Augustus van Alphen H, Long DM. Association between peridural scar and activity-related pain after lumbar discectomy. Neurol Res 1999; 21 (Suppl. 01) S37-S42 DOI: 10.1080/01616412.1999.11741025. (PMID: 10214570)
- 3 Benner B, Ehni G. Spinal arachnoiditis. The postoperative variety in particular. Spine (Phila Pa 1976) 1978; 3: 40-44 (PMID: 644391)
- 4 Chan CW, Peng P. Failed back surgery syndrome. Pain Med 2011; 12: 577-606 DOI: 10.1111/j.1526-4637.2011.01089.x. (PMID: 21463472)
- 5 Loeser J. Pain due to nerve injury. Spine (Phila Pa 1976) 1985; 10: 232-235 DOI: 10.1097/00007632-198504000-00007. (PMID: 2986297)
- 6 Maroon JC, Abla A, Bost J. Association between peridural scar and persistent low back pain after lumbar discectomy. Neurol Res 1999; 21 (Suppl. 01) S43-S46 DOI: 10.1080/01616412.1999.11741026. (PMID: 10214571)
- 7 Bogduk N. The Sources of low Back Pain in the lumbar Spine and Back Pain. In: Jayson MIV. The lumbar Spine and Back Pain. 4. Edinburgh: Churchill Livingstone; 1992: 61-88
- 8 El-Mahdi MA, Abdel Latif FY, Janko M. The spinal nerve root “innervation”, and a new concept of the clinicopathological interrelations in back pain and sciatica. Neurochirurgia (Stuttg) 1981; 24: 137-141 DOI: 10.1055/s-2008-1054051.
- 9 Saxler G, Krämer J, Barden B. et al. The long-term clinical sequelae of incidental durotomy in lumbar disc surgery. Spine (Phila Pa 1976) 2005; 30: 2298-2302 DOI: 10.1097/01.brs.0000182131.44670.f7. (PMID: 16227893)
- 10 Saxler G, Brankamp J, von Knoch M. et al. The density of nociceptive SP- and CGRP-immunopositive nerve fibers in the dura mater lumbalis of rats is enhanced after laminectomy, even after application of autologous fat grafts. Eur Spine J 2008; 17: 1362-1372 DOI: 10.1007/s00586-008-0741-7. (PMID: 18704516)
- 11 McCarron RF, Wimpee MW, Hudkins PG. et al. The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine (Phila Pa 1976) 1987; 12: 760-764 DOI: 10.1097/00007632-198710000-00009. (PMID: 2961088)
- 12 Wu CY, Jou IM, Yang WS. et al. Significance of the mass-compression effect of postlaminectomy/laminotomy fibrosis on histological changes on the dura mater and nerve root of the cauda equina: an experimental study in rats. J Orthop Sci 2014; 19: 798-808 DOI: 10.1007/s00776-014-0590-7. (PMID: 25074653)
- 13 Sato M, Inage K, Sakuma Y. et al. Anti-RANKL antibodies decrease CGRP expression in dorsal root ganglion neurons innervating injured lumbar intervertebral discs in rats. Eur Spine J 2015; 24: 2017-2022 DOI: 10.1007/s00586-015-4058-z. (PMID: 26071945)
- 14 Cho HK, Ahn SH, Kim SY. et al. Changes in the Expressions of Iba1 and Calcitonin Gene-Related Peptide in Adjacent Lumbar Spinal Segments after Lumbar Disc Herniation in a Rat Model. J Korean Med Sci 2015; 30: 1902-1910 DOI: 10.3346/jkms.2015.30.12.1902. (PMID: 26713069)
- 15 Fransen P. Prevention of scar tissue formation in spinal surgery: state of the art and review of the literature. J Neurosurg Sci 2011; 55: 277-281 (PMID: 21968590)
- 16 Akeson WH, Massie JB, Huang B. et al. Topical high-molecular-weight hyaluronan and a roofing barrier sheet equally inhibit postlaminectomy fibrosis. Spine J 2005; 5: 180-190 DOI: 10.1016/j.spinee.2004.06.019. (PMID: 15749618)
- 17 Alkalay RN, Kim DH, Urry DW. et al. Prevention of postlaminectomy epidural fibrosis using bioelastic materials. Spine (Phila Pa 1976) 2003; 28: 1659-1665 DOI: 10.1097/01.BRS.0000083161.67605.40. (PMID: 12897488)
- 18 Klopp LS, Simon BJ, Bush JM, Enns RM. et al. Comparison of a caprolactone/lactide film (mesofol) to two polylactide film products as a barrier to postoperative peridural adhesion in an ovine dorsal laminectomy model. Spine (Phila Pa 1976) 2008; 33: 1518-1526 DOI: 10.1097/BRS.0b013e31817886e0. (PMID: 18552667)
- 19 Klopp LS, Toth JM, Welch WC. et al. Bioresorbable film for the prevention of adhesion to the anterior spine after anterolateral discectomy. Spine J 2009; 9: 411-417 DOI: 10.1016/j.spinee.2009.01.001. (PMID: 19272839)
- 20 Klopp LS, Welch WC, Tai JW. et al. Use of polylactide resorbable film as a barrier to postoperative peridural adhesion in an ovine dorsal laminectomy model. Neurosurg Focus 2004; 16: E2 DOI: 10.3171/foc.2004.16.3.3. (PMID: 15198490)
- 21 Zhang ZW, Xu XX, Yang CD. et al. Experimental study on the prevention of epidural scar adhesion with polycaprolactone/polylactic acid membrane. Zhonghua Wai Ke Za Zhi 2004; 42: 1497-1500
- 22 Holmdahl L, Kotseos K, Bergström M. et al. Overproduction of transforming growth factor-β1 (TGF-β1) is associated with adhesion formation and peritoneal fibrinolytic impairment. Surgery 2001; 129: 626-632 DOI: 10.1067/msy.2001.113039. (PMID: 11331455)
- 23 Jürgens C, Schulz AP, Porté T. et al. Biodegradable Films in Trauma and Orthopedic Surgery. Eur J Trauma 2006; 32: 160-171 DOI: 10.1007/s00068-006-6051-z.
- 24 Kawamoto K, Matsuda H. Nerve growth factor and wound healing. Prog Brain Res 2004; 146: 369-384 DOI: 10.1016/S0079-6123(03)46023-8. (PMID: 14699974)
- 25 Matsuda H, Koyama H, Sato H. et al. Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice. J Exp Med 1998; 187: 297-306 DOI: 10.1084/jem.187.3.297. (PMID: 9449710)
- 26 Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 2005; 436: 193-200 DOI: 10.1038/nature03875. (PMID: 16015319)