Synlett 2022; 33(16): 1655-1659
DOI: 10.1055/a-1877-3822
letter

Stereocontrolled Synthesis of Some Novel Azaheterocyclic β-Amino Ester Stereoisomers with Multiple Stereogenic Centers

Anas Semghouli
a   Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
b   Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
,
Attila M. Remete
a   Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
,
Tamás T. Novák
b   Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
,
Loránd Kiss
b   Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok krt. 2, Hungary
› Author Affiliations
We are grateful to the Hungarian Research Foundation (FK 134586) for financial support.


Abstract

The synthesis of some new functionalized azaheterocyclic β-amino esters with multiple stereocenters has been achieved from readily available unsaturated bicyclic β-amino acids by a stereocontrolled synthetic protocol involving N-allylation/propargylation, ring-opening metathesis, and selective ring closure with chemodifferentiation through ring-closing metathesis (RCM). The RCM transformation was investigated under various experimental conditions to analyze the scope of the catalyst, yield, conversion, and substrate effect. The structure of the starting (oxa)norbornene β-amino acids predetermined the structure of the new azaheterocyclic derivatives; the synthetic procedure proceeded with conservation of the configuration of the stereogenic centers.

Supporting Information



Publication History

Received: 21 May 2022

Accepted after revision: 15 June 2022

Accepted Manuscript online:
15 June 2022

Article published online:
20 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
  • 2 Kress S, Blechert S. Chem. Soc. Rev. 2012; 41: 4389
  • 3 Higman CS, Lummiss JA. M, Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
  • 4 Lecourt C, Dhambri S, Allievi L, Sanogo Y, Zeghbib N, Othman RB, Lannou M.-I, Sorin G, Ardisson J. Nat. Prod. Rep. 2018; 35: 105
  • 5 Groso EJ, Schindler CS. Synthesis 2019; 51: 1100
  • 6 Holub N, Blechert S. Chem. Asian J. 2007; 2: 1064
  • 7 Kotha S, Meshram M, Khedkar P, Banerjee S, Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
  • 8 Semghouli A, Benke Z, Remete AM, Novák TT, Fustero S, Kiss L. Chem. Asian J. 2021; 16: 3873
  • 9 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 10 Aniszewski T. Alkaloids: Chemistry, Biology, Ecology, and Applications, 2nd ed. Elsevier; Amsterdam: 2015
  • 11 Prandi C, Occhiato EG. Pest Manag. Sci. 2019; 75: 2385
  • 12 Damiano BP, Mitchell JA, Giardino E, Corcoran T, Haertlein BJ, de Garavilla L, Kauffman JA, Hoekstra WJ, Maryanoff BE, Andrade-Gordon P. Thromb. Res. 2001; 104: 113
  • 13 Ott GR, Asakawa N, Lu Z, Liu R.-Q, Covington MB, Vaddi K, Qian M, Newton RC, Christ DD, Traskos JM, Decicco CP, Duan JJ.-W. Bioorg. Med. Chem. Lett. 2008; 18: 694
  • 14 Porter EA, Weisblum B, Gellman SH. J. Am. Chem. Soc. 2002; 124: 7324
  • 15 Kiss L, Mangelinckx S, Sillanpää R, Fülöp F, De Kimpe N. J. Org. Chem. 2007; 72: 7199
  • 16 Kiss L, Mangelinckx S, Fülöp F, De Kimpe N. Org. Lett. 2007; 9: 4399
  • 17 Kiss L, Kazi B, Forró E, Fülöp F. Tetrahedron Lett. 2008; 49: 339
  • 18 Kazi B, Kiss L, Forró E, Fülöp F. Tetrahedron Lett. 2010; 51: 82
  • 19 Kazi B, Kiss L, Forró E, Mándity I, Fülöp F. ARKIVOC 2010; (ix): 31
  • 20 Kiss L, Forró E, Fülöp F. Beilstein J. Org. Chem. 2015; 11: 596
  • 21 Ábrahámi RA, Kiss L, Barrio P, Fülöp F. Tetrahedron 2016; 72: 7526
  • 22 Nonn M, Kara D, Ouchakour L, Forró E, Haukka M, Kiss L. Synthesis 2021; 53: 1163
  • 23 Ouchakour L, Nonn M, Remete AM, Kiss L. Eur. J. Org. Chem. 2021; 3874
  • 24 Stájer G, Szabó EA, Fülöp F, Bernáth G. J. Heterocycl. Chem. 1983; 20: 1181
  • 25 Stájer G, Szabó EA, Fülöp F, Bernáth G. J. Heterocycl. Chem. 1984; 21: 1373
  • 26 Hoveyda AH, Liu Z, Qin C, Koengeter T, Mu Y. Angew. Chem. Int. Ed. 2020; 59: 22324
  • 27 Maechling S, Norman SE, McKendrick JE, Basra S, Köppner K, Blechert S. Tetrahedron Lett. 2006; 47: 189
  • 28 Stájer G, Szabó AE, Sohár P, Csámpai A, Sillanpää R. J. Mol. Struct. 2006; 784: 239
  • 29 Kardos M, Kiss L, Haukka M, Fustero S, Fülöp F. Eur. J. Org. Chem. 2017; 1894
  • 30 Nonn M, Benke Z, Fustero S, Fülöp F, Kiss L. Eur. J. Org. Chem. 2019; 5285
  • 31 Ring-Rearrangement Metathesis Reaction; General Procedure Ethylene and the appropriate metathesis catalyst (G-1, G-2, HG-1, or HG-2; 3 mol%) were added to a solution of the appropriate N-allylated or N-propargylated N-tosyl-protected ester (100 mg) in anhyd CH2Cl2 (10 mL), and the mixture was stirred at RT for 4 h. To decompose the catalyst, a mixture of H2O (12 mL), MeOH (2 mL), and NaHCO3 (0.1 g) was added and the mixture was stirred for an additional 2 h. The phases were separated and the aqueous phase was extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were dried (Na2SO4) and concentrated under reduced pressure, and the crude product was purified by column chromatography (silica gel). Ethyl (4aS,6R,7S,7aR)-1-Tosyl-6-vinyl-2,4a,5,6,7,7a-hexahydro-1H-cyclopenta[b]pyridine-7-carboxylate [(±)-13] Prepared from compound (±)-12 according to the general procedure and purified by column chromatography [silica gel, hexane–EtOAc (8:1)] as a pale-yellow oil; yield: 78% with G-1 catalyst, 71% with G-2, 69% with HG-1, and 74% with HG-2; Rf = 0.40 (hexane–EtOAc, 4:1).1H NMR (500 MHz, CDCl3): δ = 1.17 (t, J = 7.10 Hz, 3 H, CH3), 1.87–1.96 (m, 1 H, H-5), 2.03–2.11 (m, 1 H, H-5), 2.39–2.42 (s, 3 H, Ar-CH3), 2.65–2.71 (m, 1 H, 4aH), 2.76–2.87 (m, 1 H, H-6), 3.18 (t, J = 6.80 Hz, 1 H, H-7), 3.54–3.60 (m, 1 H, H-2), 3.85–3.96 (m, 2 H, O–CH2– and H-2), 3.98–4.05 (m, 1 H, O–CH2–), 4.55–4.64 (m, 1 H, 7aH), 4.98–5.09 (m, 2 H, =CH2), 5.53–5.58 (m, 1 H, H-4), 5.64–5.69 (m, 1 H, H-3), 5.73–5.81 (m, 1 H, –CH=), 7.25–7.29 (d, J = 8.40 Hz, 2 H, CH-Ar), 7.66–7.69 (d, J = 8.40 Hz, 2 H, CH-Ar). 13C NMR (126 MHz, CDCl3): δ = 14.13, 21.50, 34.01, 35.38, 41.07, 44.57, 52.75, 56.54, 60.32, 116.21, 119.79, 127.00, 128.16, 129.62, 136.75, 137.04, 143.11, 171.95. HRMS (ESI+): m/z [M + H]+ calcd for C20H26NO4S: 376.1575; found: 376.1577.