Subscribe to RSS
DOI: 10.1055/a-1947-5339
Assessment of the Retinal Nerve Fibre Layer, Retina, and Choroid in Osteogenesis Imperfecta
Bewertung der retinalen Nervenfaserschicht, Netzhaut und Aderhaut bei Osteogenesis imperfecta
Abstract
Background Osteogenesis imperfecta (OI) is a genetic disorder in which there are problems in tissues containing type I collagen, predominantly the cornea and sclera in the eye. Although there are many studies on problems with the anterior segment of the eye in patients with OI, studies on posterior structures are limited. Involvement of the sclera may affect the retinal nerve fibre layer (RNFL), which is indirectly related to intraocular pressure. In addition, the retina and choroid containing type I collagen may be affected. The aim of the study was to compare the posterior segment structures of the eye, including the RNFL, retina, and choroid, in patients with OI to those of healthy control subjects.
Methods This cross-sectional study recruited 19 patients with OI, as well as 22 age- and gender-similar healthy control subjects. Measurements of the RNFL, retina, and choroid were obtained with optical coherence tomography (Spectralis SD-OCT, Heidelberg Engineering, Heidelberg, Germany).
Results Patients with OI (mean age 14.32 ± 5.08 years) and the control group (mean age 13.73 ± 3.56 years) had similar age, refractive error, and intraocular pressure values (p > 0.05). There was no difference between groups in terms of RNFL thickness, including the superonasal, nasal, inferonasal, inferotemporal, temporal, and superotemporal sectors, retinal thickness, and choroidal thickness from five different locations (p > 0.05, for all).
Conclusion According to these results, OI does not clinically affect the RNFL, retina, and choroid in childhood.
Zusammenfassung
Hintergrund Die Osteogenesis imperfecta (OI) ist eine genetische Störung, bei der es zu Problemen in Geweben kommt, die Typ-I-Kollagen enthalten, hauptsächlich Hornhaut und Sklera im Auge. Obwohl es viele Studien zu Problemen mit dem vorderen Augenabschnitt bei Patienten mit OI gibt, sind Studien zu hinteren Strukturen begrenzt. Die Beteiligung der Sklera kann die retinale Nervenfaserschicht (RNFL) beeinflussen, die indirekt mit dem Augeninnendruck zusammenhängt. Darüber hinaus können die Netzhaut und die Aderhaut, die Typ-I-Kollagen enthalten, betroffen sein. Ziel der Studie war es, die Strukturen des hinteren Segments des Auges, einschließlich der RNFL, der Netzhaut und der Aderhaut, bei Patienten mit Osteogenesis imperfecta (OI) mit denen gesunder Kontrollpersonen zu vergleichen.
Methoden Diese Querschnittstudie rekrutierte 19 Patienten mit OI und 22 gesunde Kontrollpersonen gleichen Alters und Geschlechts. Messungen der RNFL, Netzhaut und Aderhaut wurden mit optischer Kohärenztomografie (Spectralis SD-OCT, Heidelberg Engineering, Heidelberg, Deutschland) erhalten.
Ergebnisse Patienten mit OI (Durchschnittsalter 14,32 ± 5,08 Jahre) und die Kontrollgruppe (Durchschnittsalter 13,73 ± 3,56 Jahre) hatten ein ähnliches Alter, einen ähnlichen Brechungsfehler und ähnliche Augeninnendruckwerte (p > 0,05). Es gab keinen Unterschied zwischen den Gruppen in Bezug auf die RNFL-Dicke, einschließlich der superonasalen, nasalen, inferonasalen, inferotemporalen, temporalen und superotemporalen Sektoren, der Netzhautdicke und der Aderhautdicke an 5 verschiedenen Stellen (p > 0,05, für alle).
Schlussfolgerung Gemäß diesen Ergebnissen beeinflusst die OI klinisch nicht die RNFL, die Netzhaut und die Aderhaut in der Kindheit.
Already known:
-
There has been a great deal of research into the problems of the anterior segment of the eye in osteogenesis imperfecta (OI) disease where type I collagen is defective.
-
In our study, posterior segment structures including type I collagen, retina, choroid and sclera-related retinal nerve fiber layer (RNFL) in OI disease were examined.
Newly described:
-
The results of this study suggest that there is no statistically significant difference in RNFL thickness, retinal thickness, or choroidal thickness between pediatric patients with OI and age- and gender-similar control subjects.
-
There is a need for further larger studies to be performed on adult patients to assess the impact of OI on the posterior structures of the eye.
Schlüsselwörter
Aderhaut - Kindheit - Osteogenesis imperfecta - Retina - retinale NervenfaserschichtPublication History
Received: 30 April 2022
Accepted: 09 September 2022
Article published online:
12 January 2023
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Botor M, Fus-Kujawa A, Uroczynska M. et al. Osteogenesis Imperfecta: Current and Prospective Therapies. Biomolecules 2021; 11: 1493
- 2 Deguchi M, Tsuji S, Katsura D. et al. Current Overview of Osteogenesis Imperfecta. Medicina (Kaunas) 2021; 57: 464
- 3 Treurniet S, Burger P, Ghyczy EAE. et al. Ocular characteristics and complications in patients with osteogenesis imperfecta: a systematic review. Acta Ophthalmol 2022; 100: e16-e28
- 4 Burnei G, Vlad C, Georgescu I. et al. Osteogenesis imperfecta: diagnosis and treatment. J Am Acad Orthop Surg 2008; 16: 356-366
- 5 Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014; 164 A: 1470-1481
- 6 Keleş A, Doğuizi S, Şahin NM. et al. Anterior Segment Findings in Patients With Osteogenesis Imperfecta: A Case-Control Study. Cornea 2020; 39: 935-939
- 7 Evereklioglu C, Madenci E, Bayazit YA. et al. Central corneal thickness is lower in osteogenesis imperfecta and negatively correlates with the presence of blue sclera. Ophthalmic Physiol Opt 2002; 22: 511-515
- 8 Magalhaes OA, Rohenkohl HC, de Souza LT. et al. Collagen I Defect Corneal Profiles in Osteogenesis Imperfecta. Cornea 2018; 37: 1561-1565
- 9 Campagna G, Al-Mohtaseb Z, Khandelwal S. et al. Sequential traumatic corneal open globe rupture in a patient with osteogenesis imperfecta type I. Am J Ophthalmol Case Rep 2018; 11: 35-36
- 10 Mietz H, Kasner L, Green WR. Histopathologic and electron-microscopic features of corneal and scleral collagen fibers in osteogenesis imperfecta type III. Graefes Arch Clin Exp Ophthalmol 1997; 235: 405-410
- 11 Koepp P. [Hereditary diseases with lens dislocation: clinical aspects]. Klin Monbl Augenheilkd 1987; 190: 8-10
- 12 Kaiser-Kupfer MI, McCain L, Shapiro JR. et al. Low ocular rigidity in patients with osteogenesis imperfecta. Invest Ophthalmol Vis Sci 1981; 20: 807-809
- 13 Mauri L, Uebe S, Sticht H. et al. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet J Rare Dis 2016; 11: 108
- 14 Bohnsack BL. Infantile-onset glaucoma and anterior megalophthalmos in osteogenesis imperfecta. J AAPOS 2016; 20: 170-172
- 15 Wallace DJ, Chau FY, Santiago-Turla C. et al. Osteogenesis imperfecta and primary open angle glaucoma: genotypic analysis of a new phenotypic association. Mol Vis 2014; 20: 1174-1181
- 16 Beighton P, Winship I, Behari D. The ocular form of osteogenesis imperfecta: a new autosomal recessive syndrome. Clin Genet 1985; 28: 69-75
- 17 Khalil MK. Subhyaloid hemorrhage in osteogenesis imperfecta tarda. Can J Ophthalmol 1983; 18: 251-252
- 18 Scollo P, Snead MP, Richards AJ. et al. Bilateral giant retinal tears in Osteogenesis Imperfecta. BMC Med Genet 2018; 19: 8
- 19 Madigan WP, Wertz D, Cockerham GC. et al. Retinal detachment in osteogenesis imperfecta. J Pediatr Ophthalmol Strabismus 1994; 31: 268-269
- 20 Eliott D, Rezai KA, Dass AB. et al. Management of retinal detachment in osteogenesis imperfecta. Arch Ophthalmol 2003; 121: 1062-1064
- 21 Fleissig E, Barak A. Surgical management of retinal detachment in osteogenesis imperfecta: case report and review of the literature. Retin Cases Brief Rep 2019; 13: 43-46
- 22 Rishi P, Rishi E, Venkatraman A. Intravitreal bevacizumab for treatment of choroidal neovascularization associated with osteogenesis imperfecta. Indian J Ophthalmol 2012; 60: 229-231
- 23 Klug SE, Bek T. Subretinal neovascularization as the only ocular sign of osteogenesis imperfecta: a case report. Acta Ophthalmol 2017; 95: e159-e160
- 24 Bellanca RF, Scarinci F, Parravano M. Multimodal imaging in a young male with osteogenesis imperfecta complicated with choroidal neovascularization. Eur J Ophthalmol 2020; 30: NP21-NP24
- 25 Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res 2004; 78: 609-623
- 26 Curcio CA, Johnson M. Structure, Function, and Pathology of Bruchʼs Membrane. In: Ryan SJ, Schachat AP, Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P, eds. Retina. 5th ed. Vol. 1 London: Elsevier; 2012: 465-481
- 27 Manschot WA. Ocular anomalies in osteogenesis imperfecta. Ophthalmologica 1965; 149: 241-245
- 28 Lagrou LM, Gilbert J, Hannibal M. et al. Altered corneal biomechanical properties in children with osteogenesis imperfecta. J AAPOS 2018; 22: 183-187.e1
- 29 Tatham AJ, Medeiros FA, Zangwill LM. et al. Strategies to improve early diagnosis in glaucoma. Prog Brain Res 2015; 221: 103-133
- 30 Ghazi NG, Green WR. Pathology and pathogenesis of retinal detachment. Eye (Lond) 2002; 16: 411-421
- 31 Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1871-1883
- 32 Steiner M, Esteban-Ortega MDM, Muñoz-Fernández S. Choroidal and retinal thickness in systemic autoimmune and inflammatory diseases: A review. Surv Ophthalmol 2019; 64: 757-769