Synthesis 2023; 55(08): 1285-1297
DOI: 10.1055/a-1975-5291
paper

High-Pressure Activation to Circumvent Product Degradation in the Reaction of Unprotected Glyconitrones with Alkynes

Nathan Noël
,
Gatien Messire
,
Fabien Massicot
,
Jean-Luc Vasse
,
The authors would like to thank the Centre National de la Recherche Scientifique (CNRS) and Univ. Reims Champagne Ardenne (URCA) for financial support. N.N. is grateful to URCA and Ecole Doctorale ABIES for a doctoral allocation.


Abstract

Cycloadditions of nitrones with alkynes usually occur best under heat activation. Due to the instability of the formed isoxazolines, alternative activation methods must be found. Here, hyperbaric conditions are used to transform nitrones generated from unprotected carbohydrates into the corresponding polyhydroxy-isoxazolines at room temperature. The reaction proved completely regioselective in favor of the 5-substituted 4-isoxazolines, and the products are obtained in good yields as mixtures of the two possible diastereoisomers. Further transformations into biologically valuable targets are described. The whole synthesis constitutes a very straightforward procedure for the transformation of aldoses, and is highly compatible with the principles of green chemistry.

Supporting Information



Publication History

Received: 07 October 2022

Accepted: 09 November 2022

Accepted Manuscript online:
09 November 2022

Article published online:
15 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Yoshimura A, Saito A, Yusubov MS, Zhdankin VV. Synthesis 2020; 52: 2299
    • 1b Murahashi S.-I, Imada Y. Chem. Rev. 2019; 119: 4684
    • 1c Coutouli-Argyropoulou E, Sarridis P, Gkizis P. Green Chem. 2009; 11: 1906
    • 1d Freysoldt KT. H. E, Wierschem F. Chem. Soc. Rev. 2005; 34: 507
    • 1e Yang J. Synlett 2012; 2293
    • 1f Gothelf KV, Jorgensen KA. Chem. Commun. 2000; 1449
    • 1g Gothelf KV, Jorgensen KA. Chem. Rev. 1998; 98: 863
    • 1h Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
    • 1i Osborn HM. I, Gemmell N, Harwood LM. J. Chem. Soc., Perkin Trans. 1 2002; 2419
    • 1j Rios-Gutierrez M, Domingo LR. Eur. J. Org. Chem. 2019; 267
    • 1k Freeman JP. Chem. Rev. 1983; 83: 241
    • 1l Escudero J, Bellosta V, Cossy J. Lett. Org. Chem. 2018; 15: 365
    • 2a Zhou X, Hohman AE, Hsu WH. J. Vet. Pharmacol. Ther. 2022; 45: 1
    • 2b Kumar G, Shankar R. ChemMedChem 2021; 16: 430
    • 2c Goncalves IL, Machado das Neves G, Kagami LP, Eifler-Lima VL, Merlo AA. Bioorg. Med. Chem. 2021; 30: 115934
    • 2d Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
    • 2e Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2010; 3363
    • 2f Habeeb AG, Rao PN. P, Knaus E. J. Med. Chem. 2001; 44: 2921
    • 2g Long A. Drug Discovery Infect. Dis. 2018; 8: 319
    • 3a Heany F, Fenlon J, O’Mahony C, McArdle P, Cunningham D. J. Chem. Soc., Perkin Trans. 1 2001; 3382
    • 3b Tangara S, Aupic C, Kanazawa A, Poisson J.-F, Py S. Org. Lett. 2017; 19: 4842
    • 3c Ishikawa T, Kudoh T, Yoshida J, Yasuhara A, Manabe S, Saito S. Org. Lett. 2002; 4: 1907
    • 3d Chakraborty B, Rai N. Ind. J. Chem. 2018; 57B: 1509
    • 3e Padwa A, Wong GS. K. J. Org. Chem. 1986; 51: 3125
    • 4a Gonzalez-Cruz D, Tejedor D, de Armas P, Garcia-Tellado F. Chem. Eur. J. 2007; 13: 4823
    • 4b Martina K, Tagliapetra S, Veselov VV, Cravotto G. Front. Chem. 2019; 7: 95
    • 4c Chakraborty B, Chhetri MS, Chhetri E. J. Heterocycl. Chem. 2017; 54: 110
    • 4d Chakraborty B. J. Heterocycl. Chem. 2020; 57: 477
    • 4e Sharma A, Appukkuttan P, Van der Eycken E. Chem. Commun. 2012; 48: 1623
    • 5a Rulev AY, Zubkov FI. Org. Biomol. Chem. 2022; 20: 2320
    • 5b Chataigner I, Maddaluno J. High-Pressure Synthesis: An Eco-friendly Chemistry . In Activation Methods: Sonochemistry and High Pressure . Goddard J.-P, Malacria M, Ollivier C. John Wiley & Sons; Hoboken: 2019: 95-149
    • 5c Hugelshofer CL, Magauer T. Synthesis 2014; 46: 1279
  • 6 Matsumoto K, Hamana H, Iida H. Helv. Chim. Acta 2005; 88: 2033
    • 7a Messire G, Massicot F, Pascual L, Riguet E, Vasse J.-L, Behr J.-B. Org. Biomol. Chem. 2020; 18: 5708
    • 7b Messire G. Ph.D. Thesis. Université de Reims Champagne Ardenne; France: 2021
    • 7c White JD, Badger RA, Kezar HS, Pallenberg AJ, Schiehser GA. Tetrahedron 1989; 45: 6631
  • 8 Merino P, Tejero T, Delso I, Matute R. Org. Biomol. Chem. 2017; 15: 3364
    • 9a Dondoni A, Perrone D. Tetrahedron 2003; 59: 4261
    • 9b Cicchi S, Marradi M, Corsi M, Faggi C, Goti A. Eur. J. Org. Chem. 2003; 4152
    • 9c Goff RD, Thorson JS. J. Med. Chem. 2010; 53: 8129
    • 9d Tronchet J, Buchholzer F, Zsély M, Geoffroy M, Schmidt M, Mansi MN. Pharm. Acta Helv. 1992; 67: 43
    • 9e Yoshioka T, Yamada H, Uematsu T. J. Chem. Soc., Perkin Trans. 1 1985; 1271
  • 10 Nguyen TB, Beauseigneur A, Martel A, Dhal R, Laurent M, Dujardin G. J. Org. Chem. 2010; 75: 611
    • 11a Cai ZP, Hagan AK, Wang MM, Flitsch SL, Liu L, Voglmeier J. Anal. Chem. 2014; 86: 5179
    • 11b Lambu MR, Judeh ZM. A. Green Chem. 2019; 21: 821
  • 12 Coskun N, Tat FT, Güven Ö. Ö. Tetrahedron 2001; 57: 3413
    • 13a Lopez-Ortega B, Jenkinson SF, Claridge TD. W, Fleet GW. J. Tetrahedron: Asymmetry 2008; 19: 976
    • 13b Maciaszczyk J, Jasinski M. Tetrahedron: Asymmetry 2015; 26: 510
    • 14a Bernotas RC, Adams G. Tetrahedron Lett. 1996; 37: 7339
    • 14b Fraser JD, Vincent V, Wightman RH. Chem. Commun. 2000; 2127
    • 14c Tamura O, Takeda K, Mita N, Sakamoto M, Okamoto I, Morita N, Ishibashi H. Org. Biomol. Chem. 2011; 9: 7411
    • 14d Kui EL, Kanazawa A, Behr J.-B, Py S. Eur. J. Org. Chem. 2018; 2178
    • 15a Sun X.-L, Kai T, Tanaka M, Takayanagi H, Furuhata K. Chem. Pharm. Bull. 1995; 43: 1654
    • 15b Driguez P.-A, Barrere B, Quash G, Doutheau A. Carbohydr. Res. 1994; 262: 297
    • 15c Sun X.-L, Sato N, Kai T, Furuhata K. Carbohydr. Res. 2000; 323: 1
    • 16a Pandey G, Dumbre SG, Khan MI, Shabab M, Puranik VG. Tetrahedron Lett. 2006; 47: 7923
    • 16b Malinowski M, Hensienne R, Kern N, Tardieu D, Bodlenner A, Hazelard D, Compain P. Org. Biomol. Chem. 2018; 16: 4688
    • 16c Hensienne R, Hazelard D, Compain P. ARKIVOC 2019; (iv): 4
    • 16d Kramer B, Franz T, Picasso S, Pruschek P, Jager V. Synlett 1997; 295
    • 16e Chmielewski M, Kaluza Z, Abramski W, Grodner J, Belzecki C, Sedmera P. Tetrahedron 1989; 45: 227
  • 17 Ahn C, Kennington JW, DeShong P. J. Org. Chem. 1994; 59: 6282