Synthesis 2023; 55(08): 1253-1259
DOI: 10.1055/a-2004-1006
paper

Facile Synthesis of Diaryl Sulfones through Arylsulfonylation of Arynes and Thiosulfonates

Yating Zheng
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
,
Delin Tang
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
,
Pei Xie
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
,
Jinyun Luo
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
,
Zhihua Cai
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
,
Lin He
a   School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
b   Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 22161039) and Shihezi University (Start-up Fund for High-Level Talents, No. KX015001 and International Cooperation Project, No. KX01480304).


Abstract

A mild and transition-metal-free arylsulfonylation reaction of arynes has been developed. Arynes generated in situ from 2-(trimethylsilyl)aryl triflates undergo nucleophilic addition with thiosulfonates to produce diaryl sulfones in 41–99% yield. The reaction can be scaled easily to gram-scale with the high yield maintained. Finally, mechanistic experiments showed that acetonitrile acted as a proton source.

Supporting Information



Publication History

Received: 11 August 2022

Accepted after revision: 26 December 2022

Accepted Manuscript online:
26 December 2022

Article published online:
13 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Stearns BA, Baccei C, Bain G, Broadhead A, Clark RC, Coate H, Evans JF, Fagan P, Hutchinson JH, King C, Lee C, Lorrain DS, Prasit P, Prodanovich P, Santini A, Scott JM, Stock NS, Truong YP. Bioorg. Med. Chem. Lett. 2009; 19: 4647
    • 1b Feng M, Tang B, Liang HS, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
    • 1c Sulfur Chemistry. In Topics in Current Chemistry Collections . Jiang X. Springer; Cham: 2018
    • 1d Yu G, Wang Q, Liu S, Zhang X, Che Q, Zhang G, Zhu T, Gu Q, Li D. J. Nat. Prod. 2019; 82: 998
    • 1e Li P, Wang L, Wang X. J. Heterocycl. Chem. 2021; 58: 28
    • 2a Crowley PJ, Fawcett J, Kariuki BM, Moralee AC, Percy JM, Salafia V. Org. Lett. 2002; 4: 4125
    • 2b Blakemore PR. J. Chem. Soc, Perkin Trans. 1 2002; 23: 2563
    • 2c Yang H, Carter RG, Zakharov LN. J. Am. Chem. Soc. 2008; 130: 9238
    • 2d Söderman SC, Schwan AL. J. Org. Chem. 2012; 77: 10978
    • 2e Wang Q.-G, Zhou Q.-Q, Deng J.-G, Chen Y.-C. Org. Lett. 2013; 15: 4786
    • 2f Dussart N, Trinh HV, Gueyrard D. Org. Lett. 2016; 18: 4790
    • 2g Trost BM, Kalnmals CA. Chem. Eur. J. 2019; 25: 11193
    • 2h Oka N, Mori A, Suzuki K, Ando K. J. Org. Chem. 2021; 86: 657
    • 3a Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
    • 3b Shaaban S, Liang S, Liu N.-W, Manolikakes G. Org. Biomol. Chem. 2017; 15: 1947
    • 3c Zhu J, Yang W.-C, Wang X.-D, Wu L. Adv. Synth. Catal. 2018; 360: 386
    • 3d Joseph D, Idris MA, Chen J, Lee S. ACS Catal. 2021; 11: 4169
    • 3e Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. ChemSusChem 2021; 14: 4878
    • 4a Griffin RJ, Henderson A, Curtin NJ, Echalier A, Endicott JA, Hardcastle IR, Newell DR, Noble ME. M, Wang L.-Z, Golding BT. J. Am. Chem. Soc. 2006; 128: 6012
    • 4b Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 3121
    • 4c Cheng Z, Sun P, Tang A, Jin W, Liu C. Org. Lett. 2019; 21: 8925
    • 4d Li X, Du J, Zhang Y, Chang H, Gao W, Wei W. Org. Biomol. Chem. 2019; 17: 3048
    • 4e Xu X, Yan L, Wang S, Wang P, Yang A.-X, Li X, Lu H, Cao Z.-Y. Org. Biomol. Chem. 2021; 19: 8691
    • 5a Olah GA, Kobayashi S, Nishimura J. J. Am. Chem. Soc. 1973; 95: 564
    • 5b Ueda M, Uchiyama K, Kano T. Synthesis 1984; 323
    • 5c Alizadeh A, Khodaei MM, Nazari E. Tetrahedron Lett. 2007; 48: 6805
    • 5d Xu X.-H, Liu G.-K, Azuma A, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 4854
    • 5e Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
    • 5f Pandya VG, Mhaske SB. Org. Lett. 2014; 16: 3836
    • 5g Aithagani SK, Yempalla KR, Munagala G, Vishwakarma RA, Singh PP. RSC Adv. 2014; 4: 50208
    • 5h Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
    • 5i Hu Y, Huang Y, Zhao X, Gao Y, Li X, Chen Q. Org. Biomol. Chem. 2021; 19: 7066
    • 5j Yoshii Y, Ito A, Hirashima T, Manabe O. Nippon Kagaku Kaishi 1986; 8: 1117
    • 7a Pandey AK, Kumar S, Singh R, Singh KN. Tetrahedron 2018; 74: 6704
    • 7b Zhang Z, Wang S, Zhang Y, Zhang G. J. Org. Chem. 2019; 84: 3919
    • 7c Gong X, Shen Z, Wang G, Qu L, Zhu C. Org. Biomol. Chem. 2021; 19: 10662
    • 7d Wang X, Luo D, Wang X, Zeng X, Wang X, Hu Y. Tetrahedron Lett. 2021; 87: 153540
    • 9a Ahire MM, Thoke MB, Mhaske SB. Org. Lett. 2018; 20: 848
    • 9b Gakar RN, Bhattachariee S, Biju AT. Org. Lett. 2019; 21: 737
    • 9c Saputra A, Fan R, Yao T, Chen J, Tan J. Adv. Synth. Catal. 2020; 362: 2683
    • 9d Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Org. Lett. 2020; 22: 9097
    • 9e Gaykar RN, George M, Guin A, Bhattacharjee S, Biju AK. Org. Lett. 2021; 23: 3447
    • 9f Zhao J, Larock RC. Org. Lett. 2005; 7: 4273
    • 9g Zhao J, Larock RC. J. Org. Chem. 2007; 72: 583
    • 9h Zhang L, Li X, Sun Y, Zhao W, Luo F, Huang X, Lin L, Yang Y, Peng B. Org. Biomol. Chem. 2017; 15: 7181
    • 9i Li X, Sun Y, Huang X, Zhang L, Kong L, Peng B. Org. Lett. 2017; 19: 838
    • 9j Shi J, Qiu D, Wang J, Xu H, Li Y. J. Am. Chem. Soc. 2015; 137: 5670
    • 9k Garg P, Singh A. Org. Lett. 2018; 20: 1320
    • 9l Cheng B, Li Y, Wang T, Zhang X, Li H, He Y, Li Y, Zhai H. J. Org. Chem. 2020; 85: 6794
    • 9m Matsuzawa T, Hosoya T, Yoshida S. Chem. Sci. 2020; 11: 9691
    • 9n Pawliczek M, Garve LK. B, Werz DB. Chem. Commun. 2015; 51: 9165
    • 9o Zhao X, Huang Y, Qing F.-L, Xu X.-H. RSC Adv. 2017; 7: 47
    • 9p Shigetomi T, Nojima A, Shioji K, Okuma K, Yokomori Y. Heterocycles 2006; 68: 2243
    • 9q Huang Y, Chen Q. Chin. J. Org. Chem. 2020; 40: 4087
    • 9r Matsuzawa T, Yoshida S, Hosoya T. Tetrahedron Lett. 2018; 59: 4197
    • 9s Hazarika H, Gogoi P. Org. Biomol. Chem. 2021; 19: 8466
    • 10a Hanamoto T, Korekoda K, Nakata K, Handa K, Koga Y, Kondo M. J. Fluorine Chem. 2002; 118: 99
    • 10b Kopp F, Knochel P. Org. Lett. 2007; 9: 1639
    • 10c Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 10d Saravanan P, Anbarasan P. Org. Lett. 2014; 16: 848
    • 10e Yoshida S, Sugimura Y, Hazama Y, Nishiyama Y, Yano T, Shimizu S, Hosoya T. Chem. Commun. 2015; 51: 16613
    • 10f Shyam PK, Jang H.-Y. J. Org. Chem. 2017; 82: 1761
    • 10g Huang S, Thirupathi N, Tung C.-H, Xu Z. J. Org. Chem. 2018; 83: 9449
    • 10h Song T, Li H, Wei F, Tung C.-H, Xu Z. Tetrahedron Lett. 2019; 60: 916
    • 10i Wang W, Peng X, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2016; 55: 649
    • 10j Huang S, Xia Z, Lu K, Lu H, Tung C.-H, Xu Z. Chin. J. Chem. 2020; 38: 1625
    • 10k Qi J, Wei F, Huang S, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2021; 60: 4561
  • 11 Peng X, Ma C, Yung C.-H, Xu Z. Org. Lett. 2016; 18: 4154
  • 12 Kanemoto K, Sakata Y, Hosoya T, Yoshida S. Chem. Lett. 2020; 49: 593
    • 13a Cong Z.-S, Li Y.-G, Du G.-F, Gu C.-Z, Dai B, He L. Chem. Commun. 2017; 53: 13129
    • 13b Lv Y.-F, Luo J.-Y, Ma Y.-C, Dong Q, He L. Org. Chem. Front. 2021; 8: 2461
    • 13c Lv Y.-F, Luo J.-Y, Lin M.-Z, Yue H.-L, He L. Org. Chem. Front. 2021; 8: 5403
    • 13d Lv Y.-F, Luo J.-Y, Lin M.-Z, He L, Yue H.-L, Liu R.-S, Wei W. Adv. Synth. Catal. 2021; 363: 5122
    • 13e Luo J, Lin M, Wu L, Cai Z, He L, Du G. Org. Biomol. Chem. 2021; 19: 9237
    • 13f Wang W, Wan H, Du G, Dai B, He L. Org. Lett. 2019; 21: 3496
    • 13g Xie P, Yang S, Guo Y, Cai Z, Dai B, He L. J. Org. Chem. 2020; 85: 8872
    • 13h An Y, Zhang F, Du G, Cai Z, He L. Org. Chem. Front. 2021; 8: 6979
    • 13i Liu S, Xie P, Wu L, Zhao J, Cai Z, He L. Org. Chem. Front. 2022; 9: 1550
    • 14a Kim D.-K, Um H.-S, Park H, Kim S, Lee C. Chem. Sci. 2020; 11: 13071
    • 14b Lee HW, Lam FL, So CM, Lau CP, Chan AS. C, Kwong FY. Angew. Chem. Int. Ed. 2009; 48: 7436
    • 14c Marquie J, Laporterie A, Dubac J. J. Org. Chem. 2001; 66: 421
    • 14d Yang H, Li Y, Jiang M, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
    • 14e Liu X, Li W, Zheng D.-Q, Fan X.-N, Wu J. Tetrahedron 2015; 71: 3359
    • 14f Zhu D.-L, Wu Q, Li H.-Y, Li H.-X, Lang J.-P. Chem. Eur. J. 2020; 26: 3484
    • 14g Bahrami K, Khodei MM, Shahbazi F. Tetrahedron Lett. 2008; 49: 3931
    • 14h Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2013; 52: 12679
    • 14i Wu X.-M, Wang Y. Synlett 2014; 25: 1163