Zeitschrift für Komplementärmedizin 2023; 15(04): 22-27
DOI: 10.1055/a-2119-9588
Praxis
Vitamin C bei Fatigue

Die intravenöse Applikation von hochdosiertem Vitamin C bei Fatigue – ein Überblick über die aktuelle Datenlage

Karin Kraft

Summary

Eine Fatigue tritt nach Virusinfektionen, bei Autoimmun­erkrankungen und auch bei Krebspatienten auf. Hochdosiertes intravenöses Vitamin C wird bei Fatigue aufgrund seiner antioxidativen, entzündungshemmenden, endothelprotektiven und immunmodulierenden Wirkung schon lange empirisch genutzt. Inzwischen wurden auch einige klinische Studien zur Wirksamkeit von intravenös verabreichtem Vitamin C bei Fatigue als Folge eines Herpes Zoster oder eines Asthma bronchiale bzw. als Folge bzw. Begleitsymptom bei Krebs publiziert. Bei 3 der 4 kontrollierten Studien hat die Fatigue in der Vitamin-C-Gruppe im Vergleich zur Kontrollgruppe signifikant abgenommen, in 4 der 5 Beobachtungs- bzw. nicht interventionellen Studien wurde die Fatigue nach der Vitamin-C-Therapie signifikant reduziert. Auch weitere Symptome wie Schlaf- und kognitive Störungen und Schmerzen, die beim chronischen Fatigue-Syndrom beschrieben werden, wurden häufig gelindert. Aufgrund seiner Wirkungen und der Ergebnisse der bisherigen klinischen Studien könnte hochdosiertes intravenöses Vitamin C auch bei Long Covid bzw. beim Post-Covid-Syndrom, bei dem u. a. sehr häufig eine Fatigue in Kombination mit weiteren Beschwerden vorliegt, eine geeignete Behandlungsoption darstellen.



Publication History

Article published online:
02 August 2023

© 2023. Thieme. All rights reserved.

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co.
KG

 
  • Literatur

  • 1 Institute of Medicine. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: Redefining an illness (2015). Im Internet. https://www.ncbi.nlm.nih.gov/books/NBK274235/pdf/Bookshelf_NBK274235.pdf Stand: 07.06.2021
  • 2 Komaroff AL, Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome?. Front Med (Lausanne) 2020; 07: 606824
  • 3 Bleijenberg G, van der Meer JWM. Chapter 442: Chronic fatigue syndrome. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, Hrsg. Harrison’s Principles of Internal Medicine. 20. Aufl. New York 2018
  • 4 National Institute for Health and Care Excellence. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: Diagnosis and management (2021). Im Internet. https://www.nice.org.uk/guidance/ng206/resources/myalgic-encephalomyelitis-or-encephalopathychronic-fatigue-syndrome-diagnosis-and-management-pdf-66143718094021 Stand: 02.06.2023
  • 5 Chu L, Valencia IJ, Garvert DW. et al Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. Front Pediatr 2019; 07: 12
  • 6 Carruthers BM, Jain AK, De Meirleir KL. et al Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J Chronic Fatigue Syndrome 2003; 11 (01) 7-115
  • 7 Scheibenbogen C, Wittke K, Hanitsch L. et al Chronisches Fatigue-Syndrom/CFS; Praktische Empfehlungen zur Diagnostik und Therapie. Ärzteblatt Sachsen 2019; 09: 26-30
  • 8 Wildwing T, Holt N. The neurological symptoms of COVID-19: A systematic overview of systematic reviews, comparison with other neurological conditions and implications for healthcare services. Ther Adv Chronic Dis 2021; 12: 2040622320976979
  • 9 Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) – A systematic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas) 2021; 57 (05) 418
  • 10 Koczulla AR, Ankermann T, Behrends U. et al AWMF S1-Leitlinie Long/Post-Covid (2022). https://register.awmf.org/assets/guidelines/020-027l_S1_Post_COVID_Long_COVID_2022-08.pdf Stand: 11.06.2023
  • 11 Blaszczak W, Barczak W, Masternak J. et al Vitamin C as a modulator of the response to cancer therapy. Molecules 2019; 24: 453
  • 12 Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 09: 1211
  • 13 Dattola A, Silvestri M, Bennardo L. et al Role of vitamins in skin health: A systematic review. Curr Nutr Rep 2020; 09: 226-235
  • 14 Institute of Medicine (US) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington: National Academics Press; 2000
  • 15 Levine M, Padayatty SJ, Espey MG. Vitamin C: Concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2011; 02: 78-88
  • 16 Padayatty SJ, Sun H, Wang Y. et al Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann Intern Med 2004; 140: 533-537
  • 17 Kuiper C, Vissers MC, Hicks KO. Pharmacokinetic modeling of ascorbate diffusion through normal and tumor tissue. Free Radic Biol Med 2014; 77: 340-352
  • 18 Patterson T, Isales CM, Fulzele S. Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-19 Infection. Aging Dis 2021; 12: 14-26
  • 19 Vollbracht C, Kraft K. Feasibility of vitamin C in the treatment of post viral fatigue with focus on Long COVID, based on a systematic review of iv vitamin C on fatigue. Nutrients 2021; 13 (04) 1154
  • 20 Ou J, Zhu X, Chen P. et al A randomized phase II trial of best supportive care with or without hyperthermia and vitamin C for heavily pretreated, advanced, refractory non-small-cell lung cancer. J Adv Res 2020; 24: 175-182
  • 21 Stephenson CM, Levin RD, Spector T. et al Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharm 2013; 72: 139-146
  • 22 Takahashi H, Mizuno H, Yanagisawa A. High-dose intravenous vitamin C improves quality of life in cancer patients. Pers Med Universe 2012; 01: 49-53
  • 23 Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patients’ health-related quality of life after high dose vitamin C administration. J Korean Med Sci 2007; 22: 7-11
  • 24 Vollbracht C, Schneider B, Leendert V. et al Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: Results of a retrospective, multicentre, epidemiological cohort study in Germany. In Vivo 2011; 25: 983-990
  • 25 Schencking M, Vollbracht C, Weiss G. et al Intravenous vitamin C in the treatment of shingles: Results of a multicenter prospective cohort study. Med Sci Monit 2012; 18: CR215
  • 26 Vollbracht C, Raithel M, Krick B. et al Intravenous vitamin C in the treatment of allergies: An interim subgroup analysis of a long-term observational study. J Int Med Res 2018; 46: 3640-3655
  • 27 Jeon Y, Park JS, Moon S. et al Effect of intravenous high dose vitamin C on postoperative pain and morphine use after laparoscopic colectomy: A randomized controlled trial. Pain Res Manag 2016: 9147279
  • 28 Suh SY, Bae WK, Ahn HY. et al Intravenous vitamin C administration reduces fatigue in office workers: A double-blind randomized controlled trial. Nutr J 2012; 11: 7
  • 29 Carr AC, Vissers MC, Cook JS. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front Oncol 2014; 04: 283
  • 30 Finsterer J, Mahjoub SZ. Fatigue in healthy and diseased individuals. Am J Hosp Palliat Care 2014; 31: 562-575
  • 31 Borren NZ, van derWoude CJ, Ananthakrishnan AN. Fatigue in IBD: Epidemiology, pathophysiology and management. Nat Rev Gastroenterol Hepatol 2019; 16: 247-259
  • 32 Elera-Fitzcarrald C, Rocha J, Burgos PI. et al Measures of fatigue in patients with rheumatic diseases: A critical review. Arthritis Care Res 2020; 72 (10) 369-409
  • 33 Mohandas H, Jaganathan SK, Mani MP. et al Cancer-related fatigue treatment: An overview. J Cancer Res Ther 2017; 13: 916-929
  • 34 Pearson EJM, Morris ME, di Stefano M. et al Interventions for cancer-related fatigue: A scoping review. Eur J Cancer Care 2018: 27
  • 35 Repka CP, Hayward R. Effects of an exercise intervention on cancer-related fatigue and its relationship to markers of oxidative stress. Integr Cancer Ther 2018; 17: 503-510
  • 36 Lee JS, Kim HG, Lee DS. et al Oxidative stress is a convincing contributor to idiopathic chronic fatigue. Sci Rep 2018; 08: 12890
  • 37 Morris G, Stubbs B, Kohler CA. et al The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41: 255-265
  • 38 Fukuda S, Nojima J, Motoki Y. et al A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol 2016; 118: 88-93
  • 39 Segal BM, Thomas W, Zhu X. et al Oxidative stress and fatigue in systemic lupus erythematosus. Lupus 2012; 21: 984-992
  • 40 Lunec J, Blake DR. The determination of dehydroascorbic acid and ascorbic acid in the serum and synovial fluid of patients with rheumatoid arthritis (RA). Free Radic Res Commun 1985; 01: 31-39
  • 41 Jaswal S, Mehta HC, Sood AK. et al Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 2003; 338: 123-129
  • 42 Carr AC, Cook J. Intravenous vitamin C for cancer therapy – identifying the current gaps in our knowledge. Front Physiol 2018; 09: 1182
  • 43 Subramanian VS, Sabui S, Subramenium GA. et al Tumor necrosis factor alpha reduces intestinal vitamin C uptake: A role for NF-kappaB-mediated signaling. Am J Physiol Gastrointest Liver Physiol 2018; 315: G241-G248
  • 44 Korte SM, Straub RH. Fatigue in inflammatory rheumatic disorders: Pathophysiological mechanisms. Rheumatology 2019; 58: v35-v50
  • 45 Spoelstra-de Man AME, Elbers PWG, Oudemans-Van Straaten HM. Vitamin C: Should we supplement?. Curr Opin Crit Care 2018; 24: 248-255
  • 46 Holford P, Carr AC, Jovic TH. et al Vitamin C – an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients 2020; 12: 3760
  • 47 Schonrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 2020; 77: 100741
  • 48 Leppkes M, Knopf J, Naschberger E. et al Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020; 58: 102925
  • 49 Zhang J, Rao X, Li Y. et al Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care 2021; 11: 5
  • 50 Gao D, Xu M, Wang G. et al The efficiency and safety of high-dose vitamin C in patients with COVID-19: A retrospective cohort study. Aging 2021; 13: 7020-7034
  • 51 Lopez-Leon S, Wegman-Ostrosky T, Perelman C. et al More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci Rep 2021; 11 (01) 16144
  • 52 Chiscano-Camon L, Ruiz-Rodriguez JC, Ruiz-Sanmartin A. et al Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit Care 2020; 24: 522
  • 53 Carr AC, Spencer E, Dixon L. et al Patients with community acquired pneumonia exhibit depleted vitamin C status and elevated oxidative stress. Nutrients 2020; 12: 1318
  • 54 Xing Y, Zhao B, Yin L. et al Vitamin C supplementation is necessary for patients with coronavirus disease: An ultra-high-performance liquid chromatography-tandem mass spectrometry finding. J Pharm Biomed Anal 2021; 196: 113927
  • 55 Pincemail J, Cavalier E, Charlier C. et al Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxid 2021; 10: 257
  • 56 Arvinte C, Singh M, Marik PE. Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: A pilot study. Med Drug Discov 2020; 08: 100064