Synlett
DOI: 10.1055/a-2216-4765
letter

Base-Promoted [3+2] Annulation of Carbodiimides with Diazoacetonitrile for Synthesis of 5-Amino-4-cyano-1,2,3-triazoles

Lu-Nan Zhou
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
,
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
,
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
,
Jun-An Ma
a   Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
b   Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 22271212, 22271216), the National Key Research and Development Program of China (No. 2019YFA0905100), and the Tianjin Municipal Science and Technology Commission (20JCYBJ00900) and the Graduate School of Tianjin University (Graduate Outstanding Innovation Award Program for Humanities and Sciences 2023 Year Project, Project Number: B1-2023-002).


Abstract

1,2,3-Triazoles are a privileged class of heterocycles in medicinal and agrochemical science. Here, we describe the base-promoted [3+2] annulation of carbodiimides with diazoacetonitrile. This reaction protocol permits access to a variety of novel 5-amino-4-cyano-1,2,3-triazoles in a regiospecific manner. Further derivatization is exemplified by a skeletal rearrangement and an N-functionalization of triazole products.

Supporting Information



Publication History

Received: 30 October 2023

Accepted after revision: 22 November 2023

Accepted Manuscript online:
22 November 2023

Article published online:
03 January 2024

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For examples, see:
    • 1a Pedersen DS, Abell A. Eur. J. Org. Chem. 2011; 2399
    • 1b Kumar S, Sharma B, Mehra V, Kumar V. Eur. J. Med. Chem 2021; 212: 113069
    • 1c Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 1d Kantheti S, Narayan R, Raju KV. S. N. RSC Adv. 2015; 5: 3687

      For examples of the synthesis of functionalized 1,2,3-triazoles, see:
    • 2a Roque DR, Neill JL, Antoon JW, Erland P, Stevens EP. Synthesis 2005; 2497
    • 2b Totobenazara J, Burke AJ. Tetrahedron Lett. 2015; 56: 2853
    • 2c Chen Z, Cao G, Song J, Ren H. Chin. J. Chem. 2017; 35: 1797
    • 2d Usachev BI. J. Fluorine Chem. 2018; 210: 6
    • 2e Alves D, Goldani B, Lenardão EJ, Perin G, Schumacher RF, Paixão MW. Chem. Rec. 2018; 18: 527

      For examples of [3+2] annulation reactions of diazo compounds, see:
    • 3a Zheng Y, Zhang X, Yao R, Wen Y, Huang J, Xu X. J. Org. Chem. 2016; 81: 11072
    • 3b Zheng Y, Qiu L, Hong K, Dong S, Xu X. Chem. Eur. J. 2018; 24: 6705
    • 3c Zhang C, Dong S, Zheng Y, He C, Chen J, Zhen J, Qiu L, Xu X. Org. Biomol. Chem. 2018; 16: 688

      For examples, see:
    • 4a Nosachev SB, Shchurova NA, Tyrkov AG. Russ. J. Org. Chem. 2011; 47: 577
    • 4b Jin G, Zhang J, Fu D, Wu J, Cao S. Eur. J. Org. Chem. 2012; 5446
    • 4c Komsani JR, Avula S, Koppireddi S, Koochana PK, USN M, Yadla R. J. Heterocycl. Chem. 2015; 52: 764
    • 4d Rohilla S, Patel SS, Jain N. Eur. J. Org. Chem. 2016; 847
    • 4e Liu P, Clark R, Zhu L. J. Org. Chem. 2018; 83: 5092
    • 4f Klapötke TM, Krumm B, Reith T, Unger CC. J. Org. Chem. 2018; 83: 10505
    • 4g Huang W, Zhu C, Li M, Yu Y, Wu W, Tu Z, Jiang H. Adv. Synth. Catal. 2018; 360: 3117
    • 4h Shafran YM, Silaichev PS, Bakulev VA. Chem. Heterocycl. Compd. 2019; 55: 1251
    • 4i Kim WG, Baek S.-y, Jeong SY, Nam D, Jeon HH, Choe W, Baik M.-H, Hong SY. Org. Biomol. Chem. 2020; 18: 3374
    • 4j Liu E.-C, Topczewski JJ. J. Am. Chem. Soc. 2021; 143: 5308

      For examples, see:
    • 5a Julino M, Stevens MF. G. J. Chem. Soc., Perkin Trans. 1 1998; 1677
    • 5b Quast H, Ach M, Hergenröther T, Regnat D. Synthesis 2006; 1943
    • 5c Zhang X, Li H, You L, Tang Y, Hsung RP. Adv. Synth. Catal. 2006; 348: 2437
    • 5d Oppilliart S, Mousseau G, Zhang L, Jia G, Thuéry P, Rousseaua B, Cintrat J.-C. Tetrahedron 2007; 63: 8094
    • 5e Gomes AT. P. C, Martins PR. C, Rocha DR, Neves MG. P. M. S, Ferreira VF, Silva AM. S, Cavaleiro JA. S, da Silva F. deC. Synlett 2013; 24: 41
    • 5f Ferrini S, Chandanshive JZ, Lena S, Franchini MC, Giannini G, Tafi A, Taddei M. J. Org. Chem. 2015; 80: 2562
    • 5g Wang B, Liu N, Chen W, Huang D, Wang X, Hua Y. Adv. Synth. Catal. 2015; 357: 401
    • 5h Wang W, Peng X, Wei F, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2016; 55: 649
    • 5i Zhou W, Zhang M, Li H, Chen W. Org. Lett. 2017; 19: 10
    • 5j Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. ACS Catal. 2017; 7: 7529
    • 5k Beveridge RE, Hu Y, Gregoire B, Batey RA. J. Org. Chem. 2020; 85: 8447
    • 5l Zeng L, Lai Z, Zhang C, Xie H, Cui S. Org. Lett. 2020; 22: 2220
    • 5m Gribanov PS, Atoian EM, Philippova AN, Topchiy MA, Asachenko AF, Osipov SN. Eur. J. Org. Chem. 2021; 1378
    • 5n Qiu S, Chen W, Li D, Chen Y, Niu Y, Wu Y, Lei Y, Wu L, He W. Synthesis 2022; 54: 2175
    • 6a Tomé AC. In Science of Synthesis, Vol. 13, Chap. 13.13. Storr RC, Gilchrist TL. Thieme; Stuttgart: 2004. 4; 15.
    • 6b Singh H, Sindhu J, Khurana JM. RSC Adv. 2013; 3: 22360
  • 7 Cao W, Qin J, Zhang J, Sinditskii VP. Molecules 2021; 26: 6735
  • 8 Wang Y, Zhang W.-X, Xi Z. Chem. Soc. Rev. 2020; 49: 5810
  • 9 Wang S, Zhang Y, Liu G, Xu H, Song L, Chen J, Li J, Zhang Z. Org. Chem. Front. 2021; 8: 599
    • 10a Chen Z, Zhang Y, Nie J, Ma J.-A. Org. Lett. 2018; 20: 2120
    • 10b Zhang Y, Chen Z, Nie J, Zhang F.-G, Ma J.-A. J. Org. Chem. 2019; 84: 7148
    • 10c Zhou L.-N, Feng F.-F, Cheung C.-C, Ma J.-A. Org. Lett. 2021; 23: 739
    • 11a Mykhailiuk PK, Koenigs RM. Chem. Eur. J. 2020; 26: 89
    • 11b Mykhailiuk PK. Eur. J. Org. Chem. 2015; 2015: 7235
    • 11c Chandrasekharan SP, Dhami A, Mohanan K. Org. Lett. 2023; 25: 5806
    • 12a Gao C.-F, Zhou Y, Ma H, Zhang Y, Nie J, Zhang F.-G, Ma J.-A. CCS Chem. 2022; 4: 3693
    • 12b Zhou Y, Gao C.-F, Ma H, Nie J, Ma J.-A, Zhang F.-G. Chem. Asian J. 2022; 17: e202200436
    • 12c Gao C.-F, Chen Y.-J, Nie J, Zhang F.-G, Cheung CW, Ma J.-A. Chem. Commun. 2023; 59: 11664
  • 13 CCDC 2231780 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 14a Dimroth O. Justus Liebigs Ann. Chem. 1909; 364: 183
    • 14b Ashry ES. H. E, Nadeem S, Shah MR, Kilany YE. Adv. Heterocycl. Chem. 2010; 101: 161
  • 15 Xiao M.-Y, Zheng M.-M, Peng X, Xue X.-S, Zhang F.-G, Ma J.-A. Org. Lett. 2020; 22: 7762
  • 16 5-Amino-1H-1,2,3-triazole-4-carbonitriles 3a–t; General Procedure An oven-dried rubber-capped Schlenk tube equipped with a magnetic stirrer bar was charged with the appropriate carbodiimide 1 (0.40 mmol, 1.0 equiv) and Cs2CO3 (130.3 mg, 0.60 mmol, 1.5 equiv). Diazoacetonitrile (2; 53.6 mg, 0.80 mmol, 2.0 equiv) was dissolved in MeCN (2.0 mL) in a 10 mL round-bottomed flask at 0 °C, and the resulting cooled solution was transferred into the Schlenk tube by using a syringe. The resulting mixture was warmed to rt and stirred for 8 h. It was then diluted with EtOAc (10 mL) and filtered to remove the residue. The residue was rinsed with EtOAc(2 × 5 mL), and the filtrate was concentrated under a vacuum. The residue was purified by column chromatography (silica gel). 1-(4-Methoxyphenyl)-5-[(4-methoxyphenyl)amino]-1H-1,2,3-triazole-4-carbonitrile (3b) Purified by chromatography [silica gel, hexane to hexane–EtOAc (5:1)] to give a purple solid; yield: 115.7 mg (90%); mp 98–99 °C. 1H NMR (600 MHz, CDCl3): δ = 7.38 (d, J = 8.8 Hz, 2 H), 7.04 (d, J = 8.7 Hz, 2 H), 7.01 (d, J = 8.8 Hz, 2 H), 6.82 (d, J = 8.8 Hz, 2 H), 6.51 (s, 1 H), 3.82 (s, 3 H), 3.73 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 161.1, 158.3, 145.9, 130.1, 126.8, 126.2, 125.5, 115.4, 114.7, 112.2, 103.9, 55.9, 55.6. HRMS (ESI): m/z [M + H]+ calcd for C17H16N5O2 = 322.1304; found: 322.1310.