Synthesis 2024; 56(15): 2316-2328
DOI: 10.1055/a-2241-3571
short review

Organocatalytic Atroposelective Reactions of Alkynes

Zhi-Xin Zhang
a   Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Tian-Qi Hu
a   Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Long-Wu Ye
a   Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Bo Zhou
a   Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (22301250), the Natural Science Foundation of Xiamen, China (3502Z202371002), the Fundamental Research Funds for the Central Universities (20720210002, 20720230003), and the National Science Fund for Fostering Talents in Basic Science (NFFTBS; J1310024).


Abstract

The atroposelective transformation of alkynes is an efficient protocol for the assembly of axially chiral compounds. Benefitting from the rapid development of chiral organocatalysts, the organocatalytic atroposelective reactions of alkynes have been extensively studied over the past decades. An array of chiral catalysts, including chiral Brønsted acid catalysts, secondary amine catalysts, N-heterocyclic carbene (NHC) catalysts, thiourea catalysts and N-squaramide catalysts, are employed in enantioselective reactions of different alkynes. This short review summarizes the recent advances on organocatalytic atroposelective reactions of alkynes according to the type of alkyne substrate. The reaction mechanisms, modes of enantiocontrol, product diversity and applications are highlighted.

1 Introduction

2 Electron-Rich Aryl Alkynes

3 Electron-Deficient Aryl Alkynes

4 Other Types of Alkynes

5 Conclusion and Outlook



Publication History

Received: 15 December 2023

Accepted after revision: 09 January 2024

Accepted Manuscript online:
09 January 2024

Article published online:
08 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent selected reviews on axially chiral functional molecules, see:
    • 1a Tajuddeen N, Feineis D, Ihmels H, Bringmann G. Acc. Chem. Res. 2022; 55: 2370
    • 1b Perreault S, Chandrasekhar J, Patel L. Acc. Chem. Res. 2022; 55: 2581
    • 1c Basilaia M, Chen MH, Secka J, Gustafson JL. Acc. Chem. Res. 2022; 55: 2904
    • 1d Carlsson A.-CC, Karlsson S, Munday RH, Tatton MR. Acc. Chem. Res. 2022; 55: 2938
    • 1e Wang K, Xiao Y. Chirality 2021; 33: 424
    • 1f Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
    • 1g Pu L. Acc. Chem. Res. 2012; 45: 150
    • 1h Takaishi K, Kawamoto M. Molecules 2011; 16: 1603
    • 1i Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563

      For a selected book, see:
    • 2a Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011

    • For selected reviews, see:
    • 2b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 2c Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. C. Coord. Chem. Rev. 2007; 251: 2119
    • 2d Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155

      For recent selected reviews on the construction of axial chirality, see:
    • 3a Centonze G, Portolani C, Righi P, Bencivenni G. Angew. Chem. Int. Ed. 2023; 62: e202303966
    • 3b Chen Y.-B, Yang Y.-N, Huo X.-Z, Ye L.-W, Zhou B. Sci. China Chem. 2023; 66: 2480
    • 3c Qian P.-F, Zhou T, Shi B.-F. Chem. Commun. 2023; 59: 12669
    • 3d Min X.-L, Zhang X.-L, Shen R, Zhang Q, He Y. Org. Chem. Front. 2022; 9: 2280
    • 3e Cheng JK, Xiang S.-H, Tan B. Acc. Chem. Res. 2022; 55: 2920
    • 3f Qin W, Liu Y, Yan H. Acc. Chem. Res. 2022; 55: 2780
    • 3g Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
    • 3h Bai X.-F, Cui Y.-M, Cao J, Xu L.-W. Acc. Chem. Res. 2022; 55: 2545
    • 3i Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
    • 3j Wang J, Zhao C, Wang J. ACS Catal. 2021; 11: 12520
    • 3k Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514

      For selected reviews on the transformations of alkynes, see:
    • 4a Bao M, Zhou S, Hu W, Xu X. Chin. Chem. Lett. 2022; 33: 4969
    • 4b Lei J, Su L, Zeng K, Chen T, Qiu R, Zhou Y, Au C.-T, Yin S.-F. Chem. Eng. Sci. 2017; 171: 404
    • 4c Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
    • 4d Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
    • 4e Abu Sohel SM, Liu R.-S. Chem. Soc. Rev. 2009; 38: 2269
  • 5 For a selected review, see: Zhang Z.-X, Zhai T.-Y, Ye L.-W. Chem. Catal. 2021; 1: 1378

    • For selected examples on (2+2+2) cycloadditions, see:
    • 6a Wang H, Qiao B, Zhu J, Guo H, Zhang Z, Yang K, Li S.-J, Lan Y, Song Q. Chem 2024; 10: 317
    • 6b Tahara Y, Matsubara R, Mitake A, Sato T, Kanyiva KS, Shibata T. Angew. Chem. Int. Ed. 2016; 55: 4552
    • 6c Oppenheimer J, Hsung RP, Figueroa R, Johnson WL. Org. Lett. 2007; 9: 3969
    • 6d Tanaka K, Takeishi K, Noguchi K. J. Am. Chem. Soc. 2006; 128: 4586
    • 6e Shibata T, Fujimoto T, Yokota K, Takagi K. J. Am. Chem. Soc. 2004; 126: 8382

      For selected examples on intramolecular cyclization, see:
    • 7a Min X.-L, Zhang X.-L, Yi W, He Y. Nat. Commun. 2022; 13: 373
    • 7b He Y.-P, Wu H, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 2105
    • 7c Shibuya T, Shibata Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 3963

      For selected examples on alkyne insertion, see:
    • 8a Li W, Chen S, Xie J, Fan Z, Yang K, Song Q. Nat. Synth. 2023; 2: 140
    • 8b Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
    • 8c Ji D, Jing J, Wang Y, Qi Z, Wang F, Zhang X, Wang Y, Li X. Chem 2022; 8: 3346
    • 8d Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
    • 8e Takano H, Shiozawa N, Imai Y, Kanyiva KS, Shibata T. J. Am. Chem. Soc. 2020; 142: 4714
  • 9 For a selected example of a Diels–Alder reaction, see: Shibata T, Sekine A, Mitake A, Kanyiva KS. Angew. Chem. Int. Ed. 2018; 57: 15862
    • 10a Li C.-T, Qi L.-J, Liu L.-G, Ge C, Lu X, Ye L.-W, Zhou B. Nat. Commun. 2023; 14: 7058
    • 10b Chen Y.-B, Liu L.-G, Chen C.-M, Liu Y.-X, Zhou B, Lu X, Xu Z, Ye L.-W. Angew. Chem. Int. Ed. 2023; 62: e202303670
    • 10c Hornillos V, Ros A, Ramírez-López P, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. Chem. Commun. 2016; 52: 14121
  • 11 Furusawa M, Arita K, Imahori T, Igawa K, Tomooka K, Irie R. Tetrahedron Lett. 2013; 54: 7107
  • 12 Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
  • 13 Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Angew. Chem. Int. Ed. 2019; 58: 17199
  • 14 Tan Y, Jia S, Hu F, Liu Y, Peng L, Li D, Yan H. J. Am. Chem. Soc. 2018; 140: 16893
  • 15 Xu D, Huang S, Hu F, Peng L, Jia S, Mao H, Gong X, Li F, Qin W, Yan H. CCS Chem. 2022; 4: 2686
  • 16 Chang Y, Xie C, Liu H, Huang S, Wang P, Qin W, Yan H. Nat. Commun. 2022; 13: 1933
  • 17 Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
  • 18 Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
  • 19 Zhang L, Shen J, Wu S, Zhong G, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 23077
  • 20 Gou B.-B, Tang Y, Lin Y.-H, Yu L, Jian Q.-S, Sun H.-R, Chen J, Zhou L. Angew. Chem. Int. Ed. 2022; 61: e202208174
  • 21 Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
  • 22 Yang H, Sun H.-R, He R.-Q, Yu L, Hu W, Chen J, Yang S, Zhang G.-G, Zhou L. Nat. Commun. 2022; 13: 632
  • 23 Wang C.-S, Xiong Q, Xu H, Yang H.-R, Dang Y, Dong X.-Q, Wang C.-J. Chem. Sci. 2023; 14: 12091
  • 24 Zhang N, He T, Liu Y, Li S, Tan Y, Peng L, Li D, Shan C, Yan H. Org. Chem. Front. 2019; 6: 451
  • 25 Yang G, Sun S, Li Z, Liu Y, Wang J. Commun. Chem. 2021; 4: 144

    • For selected reviews on the NHC-catalyzed atroposelective synthesis of atropisomers, see:
    • 26a Song R, Xie Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 26026
    • 26b Feng J, Du D. Tetrahedron 2021; 100: 132456
    • 26c For a recent example, see: Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. Sci. China Chem. 2022; 65: 1953
  • 27 Zhang S, Wang X, Han L.-L, Li J, Liang Z, Wei D, Du D. Angew. Chem. Int. Ed. 2022; 61: e202212005
  • 28 Gao J, Zhang S, Du D. Chem. Rec. 2023; 23: e202300046
  • 29 Yan J.-L, Maiti R, Ren S.-C, Tian W, Li T, Xu J, Mondal B, Jin Z, Chi YR. Nat. Commun. 2022; 13: 84
  • 30 Lu S, Ong J.-Y, Yang H, Poh SB, Liew X, Seow CS. D, Wong MW, Zhao Y. J. Am. Chem. Soc. 2019; 141: 17062
  • 31 Wu S, Xiang S.-H, Li S, Ding W.-Y, Zhang L, Jiang P.-Y, Zhou Z.-A, Tan B. Nat. Catal. 2021; 4: 692
  • 32 Dai L, Zhou X, Guo J, Dai X, Huang Q, Lu Y. Nat. Commun. 2023; 14: 4813

    • For recent selected reviews on ynamide reactivity, see:
    • 33a Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
    • 33b Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 33c Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 33d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
    • 33e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
    • 33f Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393

      For selected examples on organocatalytic asymmetric reactions of ynamides, see:
    • 34a Xu Y, Qian G.-L, Cui D.-Q, Qian P.-C, Zhao C.-Y, Hong X, Zhou B, Ye L.-W. ACS Catal. 2023; 13: 8803
    • 34b Li H.-H, Meng Y.-N, Chen C.-M, Wang Y.-Q, Zhang Z.-X, Xu Z, Zhou B, Ye L.-W. Sci. China Chem. 2023; 66: 1467
    • 34c Zhang Z.-X, Wang X, Jiang J.-T, Chen J, Zhu X.-Q, Ye L.-W. Chin. Chem. Lett. 2023; 34: 107647
    • 34d Zhang Y.-Q, Chen Y.-B, Liu J.-R, Wu S.-Q, Fan X.-Y, Zhang Z.-X, Hong X, Ye L.-W. Nat. Chem. 2021; 13: 1093
    • 34e Chen P.-F, Zhou B, Wu P, Wang B, Ye L.-W. Angew. Chem. Int. Ed. 2021; 60: 27164
    • 34f Zhou B, Zhang Y.-Q, Zhang K, Yang M.-Y, Chen Y.-B, Li Y, Peng Q, Zhu S.-F, Zhou Q.-L, Ye L.-W. Nat. Commun. 2019; 10: 3234
    • 34g Xu Y, Sun Q, Tan T.-D, Yang M.-Y, Yuan P, Wu S.-Q, Lu X, Hong X, Ye L.-W. Angew. Chem. Int. Ed. 2019; 58: 16252
  • 35 Wang Z.-S, Zhu L.-J, Li C.-T, Liu B.-Y, Hong X, Ye L.-W. Angew. Chem. Int. Ed. 2022; 61: e202201436
  • 36 Zhang Z.-X, Liu L.-G, Liu Y.-X, Lin J, Lu X, Ye L.-W, Zhou B. Chem. Sci. 2023; 14: 5918