Subscribe to RSS
DOI: 10.1055/a-2241-3571
Organocatalytic Atroposelective Reactions of Alkynes
We are grateful for financial support from the National Natural Science Foundation of China (22301250), the Natural Science Foundation of Xiamen, China (3502Z202371002), the Fundamental Research Funds for the Central Universities (20720210002, 20720230003), and the National Science Fund for Fostering Talents in Basic Science (NFFTBS; J1310024).
Abstract
The atroposelective transformation of alkynes is an efficient protocol for the assembly of axially chiral compounds. Benefitting from the rapid development of chiral organocatalysts, the organocatalytic atroposelective reactions of alkynes have been extensively studied over the past decades. An array of chiral catalysts, including chiral Brønsted acid catalysts, secondary amine catalysts, N-heterocyclic carbene (NHC) catalysts, thiourea catalysts and N-squaramide catalysts, are employed in enantioselective reactions of different alkynes. This short review summarizes the recent advances on organocatalytic atroposelective reactions of alkynes according to the type of alkyne substrate. The reaction mechanisms, modes of enantiocontrol, product diversity and applications are highlighted.
1 Introduction
2 Electron-Rich Aryl Alkynes
3 Electron-Deficient Aryl Alkynes
4 Other Types of Alkynes
5 Conclusion and Outlook
Key words
organocatalysis - enantioselectivity - alkynes - axially chiral compounds - reaction mechanismPublication History
Received: 15 December 2023
Accepted after revision: 09 January 2024
Accepted Manuscript online:
09 January 2024
Article published online:
08 February 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tajuddeen N, Feineis D, Ihmels H, Bringmann G. Acc. Chem. Res. 2022; 55: 2370
- 1b Perreault S, Chandrasekhar J, Patel L. Acc. Chem. Res. 2022; 55: 2581
- 1c Basilaia M, Chen MH, Secka J, Gustafson JL. Acc. Chem. Res. 2022; 55: 2904
- 1d Carlsson A.-CC, Karlsson S, Munday RH, Tatton MR. Acc. Chem. Res. 2022; 55: 2938
- 1e Wang K, Xiao Y. Chirality 2021; 33: 424
- 1f Smyth JE, Butler NM, Keller PA. Nat. Prod. Rep. 2015; 32: 1562
- 1g Pu L. Acc. Chem. Res. 2012; 45: 150
- 1h Takaishi K, Kawamoto M. Molecules 2011; 16: 1603
- 1i Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
- 2a Privileged Chiral Ligands and Catalysts . Zhou Q.-L. Wiley-VCH; Weinheim: 2011
- 2b Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 2c Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. C. Coord. Chem. Rev. 2007; 251: 2119
- 2d Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
- 3a Centonze G, Portolani C, Righi P, Bencivenni G. Angew. Chem. Int. Ed. 2023; 62: e202303966
- 3b Chen Y.-B, Yang Y.-N, Huo X.-Z, Ye L.-W, Zhou B. Sci. China Chem. 2023; 66: 2480
- 3c Qian P.-F, Zhou T, Shi B.-F. Chem. Commun. 2023; 59: 12669
- 3d Min X.-L, Zhang X.-L, Shen R, Zhang Q, He Y. Org. Chem. Front. 2022; 9: 2280
- 3e Cheng JK, Xiang S.-H, Tan B. Acc. Chem. Res. 2022; 55: 2920
- 3f Qin W, Liu Y, Yan H. Acc. Chem. Res. 2022; 55: 2780
- 3g Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
- 3h Bai X.-F, Cui Y.-M, Cao J, Xu L.-W. Acc. Chem. Res. 2022; 55: 2545
- 3i Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
- 3j Wang J, Zhao C, Wang J. ACS Catal. 2021; 11: 12520
- 3k Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. 2019; 55: 8514
- 4a Bao M, Zhou S, Hu W, Xu X. Chin. Chem. Lett. 2022; 33: 4969
- 4b Lei J, Su L, Zeng K, Chen T, Qiu R, Zhou Y, Au C.-T, Yin S.-F. Chem. Eng. Sci. 2017; 171: 404
- 4c Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
- 4d Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
- 4e Abu Sohel SM, Liu R.-S. Chem. Soc. Rev. 2009; 38: 2269
- 5 For a selected review, see: Zhang Z.-X, Zhai T.-Y, Ye L.-W. Chem. Catal. 2021; 1: 1378
- 6a Wang H, Qiao B, Zhu J, Guo H, Zhang Z, Yang K, Li S.-J, Lan Y, Song Q. Chem 2024; 10: 317
- 6b Tahara Y, Matsubara R, Mitake A, Sato T, Kanyiva KS, Shibata T. Angew. Chem. Int. Ed. 2016; 55: 4552
- 6c Oppenheimer J, Hsung RP, Figueroa R, Johnson WL. Org. Lett. 2007; 9: 3969
- 6d Tanaka K, Takeishi K, Noguchi K. J. Am. Chem. Soc. 2006; 128: 4586
- 6e Shibata T, Fujimoto T, Yokota K, Takagi K. J. Am. Chem. Soc. 2004; 126: 8382
- 7a Min X.-L, Zhang X.-L, Yi W, He Y. Nat. Commun. 2022; 13: 373
- 7b He Y.-P, Wu H, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 2105
- 7c Shibuya T, Shibata Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 3963
- 8a Li W, Chen S, Xie J, Fan Z, Yang K, Song Q. Nat. Synth. 2023; 2: 140
- 8b Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
- 8c Ji D, Jing J, Wang Y, Qi Z, Wang F, Zhang X, Wang Y, Li X. Chem 2022; 8: 3346
- 8d Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
- 8e Takano H, Shiozawa N, Imai Y, Kanyiva KS, Shibata T. J. Am. Chem. Soc. 2020; 142: 4714
- 9 For a selected example of a Diels–Alder reaction, see: Shibata T, Sekine A, Mitake A, Kanyiva KS. Angew. Chem. Int. Ed. 2018; 57: 15862
- 10a Li C.-T, Qi L.-J, Liu L.-G, Ge C, Lu X, Ye L.-W, Zhou B. Nat. Commun. 2023; 14: 7058
- 10b Chen Y.-B, Liu L.-G, Chen C.-M, Liu Y.-X, Zhou B, Lu X, Xu Z, Ye L.-W. Angew. Chem. Int. Ed. 2023; 62: e202303670
- 10c Hornillos V, Ros A, Ramírez-López P, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. Chem. Commun. 2016; 52: 14121
- 11 Furusawa M, Arita K, Imahori T, Igawa K, Tomooka K, Irie R. Tetrahedron Lett. 2013; 54: 7107
- 12 Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
- 13 Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Angew. Chem. Int. Ed. 2019; 58: 17199
- 14 Tan Y, Jia S, Hu F, Liu Y, Peng L, Li D, Yan H. J. Am. Chem. Soc. 2018; 140: 16893
- 15 Xu D, Huang S, Hu F, Peng L, Jia S, Mao H, Gong X, Li F, Qin W, Yan H. CCS Chem. 2022; 4: 2686
- 16 Chang Y, Xie C, Liu H, Huang S, Wang P, Qin W, Yan H. Nat. Commun. 2022; 13: 1933
- 17 Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
- 18 Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
- 19 Zhang L, Shen J, Wu S, Zhong G, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 23077
- 20 Gou B.-B, Tang Y, Lin Y.-H, Yu L, Jian Q.-S, Sun H.-R, Chen J, Zhou L. Angew. Chem. Int. Ed. 2022; 61: e202208174
- 21 Wang C.-S, Li T.-Z, Liu S.-J, Zhang Y.-C, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
- 22 Yang H, Sun H.-R, He R.-Q, Yu L, Hu W, Chen J, Yang S, Zhang G.-G, Zhou L. Nat. Commun. 2022; 13: 632
- 23 Wang C.-S, Xiong Q, Xu H, Yang H.-R, Dang Y, Dong X.-Q, Wang C.-J. Chem. Sci. 2023; 14: 12091
- 24 Zhang N, He T, Liu Y, Li S, Tan Y, Peng L, Li D, Shan C, Yan H. Org. Chem. Front. 2019; 6: 451
- 25 Yang G, Sun S, Li Z, Liu Y, Wang J. Commun. Chem. 2021; 4: 144
- 26a Song R, Xie Y, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2021; 60: 26026
- 26b Feng J, Du D. Tetrahedron 2021; 100: 132456
- 26c For a recent example, see: Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. Sci. China Chem. 2022; 65: 1953
- 27 Zhang S, Wang X, Han L.-L, Li J, Liang Z, Wei D, Du D. Angew. Chem. Int. Ed. 2022; 61: e202212005
- 28 Gao J, Zhang S, Du D. Chem. Rec. 2023; 23: e202300046
- 29 Yan J.-L, Maiti R, Ren S.-C, Tian W, Li T, Xu J, Mondal B, Jin Z, Chi YR. Nat. Commun. 2022; 13: 84
- 30 Lu S, Ong J.-Y, Yang H, Poh SB, Liew X, Seow CS. D, Wong MW, Zhao Y. J. Am. Chem. Soc. 2019; 141: 17062
- 31 Wu S, Xiang S.-H, Li S, Ding W.-Y, Zhang L, Jiang P.-Y, Zhou Z.-A, Tan B. Nat. Catal. 2021; 4: 692
- 32 Dai L, Zhou X, Guo J, Dai X, Huang Q, Lu Y. Nat. Commun. 2023; 14: 4813
- 33a Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
- 33b Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
- 33c Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
- 33d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
- 33e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
- 33f Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
- 34a Xu Y, Qian G.-L, Cui D.-Q, Qian P.-C, Zhao C.-Y, Hong X, Zhou B, Ye L.-W. ACS Catal. 2023; 13: 8803
- 34b Li H.-H, Meng Y.-N, Chen C.-M, Wang Y.-Q, Zhang Z.-X, Xu Z, Zhou B, Ye L.-W. Sci. China Chem. 2023; 66: 1467
- 34c Zhang Z.-X, Wang X, Jiang J.-T, Chen J, Zhu X.-Q, Ye L.-W. Chin. Chem. Lett. 2023; 34: 107647
- 34d Zhang Y.-Q, Chen Y.-B, Liu J.-R, Wu S.-Q, Fan X.-Y, Zhang Z.-X, Hong X, Ye L.-W. Nat. Chem. 2021; 13: 1093
- 34e Chen P.-F, Zhou B, Wu P, Wang B, Ye L.-W. Angew. Chem. Int. Ed. 2021; 60: 27164
- 34f Zhou B, Zhang Y.-Q, Zhang K, Yang M.-Y, Chen Y.-B, Li Y, Peng Q, Zhu S.-F, Zhou Q.-L, Ye L.-W. Nat. Commun. 2019; 10: 3234
- 34g Xu Y, Sun Q, Tan T.-D, Yang M.-Y, Yuan P, Wu S.-Q, Lu X, Hong X, Ye L.-W. Angew. Chem. Int. Ed. 2019; 58: 16252
- 35 Wang Z.-S, Zhu L.-J, Li C.-T, Liu B.-Y, Hong X, Ye L.-W. Angew. Chem. Int. Ed. 2022; 61: e202201436
- 36 Zhang Z.-X, Liu L.-G, Liu Y.-X, Lin J, Lu X, Ye L.-W, Zhou B. Chem. Sci. 2023; 14: 5918
For recent selected reviews on axially chiral functional molecules, see:
For a selected book, see:
For selected reviews, see:
For recent selected reviews on the construction of axial chirality, see:
For selected reviews on the transformations of alkynes, see:
For selected examples on (2+2+2) cycloadditions, see:
For selected examples on intramolecular cyclization, see:
For selected examples on alkyne insertion, see:
For selected reviews on the NHC-catalyzed atroposelective synthesis of atropisomers, see:
For recent selected reviews on ynamide reactivity, see:
For selected examples on organocatalytic asymmetric reactions of ynamides, see: