Subscribe to RSS
DOI: 10.1055/a-2370-6625
Transition-Metal-Free Approach for the Synthesis of N-Arylated Piperidones and their Ketals from Ketene Dithioacetals
We thank the University of Delhi for providing research funding under IoE, FRP grant, and USIC. R.P. thanks CSIR, New Delhi for providing the research funding [02(469)/23/EMR-II].
![](https://www.thieme-connect.de/media/synlett/EFirst/lookinside/thumbnails/st-2024-m0144-l_10-1055_a-2370-6625-1.jpg)
Dedicated to Professor H. Ila on her 80th birthday
Abstract
N-Arylated piperidones are present as pharmacophores in many pharmaceuticals and serve as useful precursors for the construction of important new molecules. We have developed a transition-metal-free, cost-effective, and mild approach for the synthesis of N-(hetero)arylated piperidones and their ketals by using ketals of piperidones and 2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles as precursors. The desired products were obtained in two steps: amination of the 2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitrile from piperidone, followed by ring transformation using a suitable nucleophile source. We have successfully tethered functionalized dihydrophenanthrenes, hydrobenzo[c]phenanthrenes, and benzoquinolines to piperidinone moieties under transition-metal-free conditions.
Key words
ketene dithioacetals - piperidone - dihydrophenanthrenes - chromenes - ring transformation - cyanoacetamidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2370-6625.
- Supporting Information
Publication History
Received: 11 May 2024
Accepted after revision: 22 July 2024
Accepted Manuscript online:
22 July 2024
Article published online:
21 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Ganellin CR, Spickett RG. W. J. Med. Chem. 1965; 8: 619
- 2 Dyakov MY, Sokolova TD, Peretokin AV, Moskovkin AS, Unkovskii BV. Chem. Heterocycl. Compd. 1991; 27: 183
- 3a Maryanoff CA, Reitz AB, Scott MK. US 5314885, 1994
- 3b Kerrigan F, Heal DJ, Martin KF. WO 9507274, 1995
- 4a Ziegler E, Roßmann U, Litvan F, Meier H. Monatsh. Chem. 1962; 93: 26
- 4b Ziegler E, Litvan F. US 3052678, 1959
- 4c Harfenist M, Magnien E. J. Org. Chem. 1963; 28: 538
- 5a Zirngibl U. DE 2142334, 1972 ; Chem. Abstr. 1972, 77, 36383
- 5b Wolfbeis OS, Ziegler E, Knierzinger A, Wipflee H, Trummer I. Monatsh. Chem. 1980; 111: 93
- 6 Rao TS, Reese CB, Serafinowska HT, Takaku H, Zappia G. Tetrahedron Lett. 1987; 28: 4897
- 7 Matasi JJ, Caldwell JP, Zhang H, Fawzi A, Higgins GA, Cohen-Williams ME, Varty GB, Tulshian DB. Bioorg. Med. Chem. Lett. 2005; 15: 3675
- 8 Maryanoff BE, Ho W, McComsey DF, Reitz AB, Grous PP, Nortey SO, Shank RP, Dubinsky B, Taylor RJ. Jr, Gardocki JF. J. Med. Chem. 1995; 38: 16
- 9 Cooper CS, Klock PL, Chu DT, Hardy DJ, Swanson RN, Plattner JJ. J. Med. Chem. 1992; 35: 1392
- 10 Schlienger N, Lund BW, Pawlas J, Badalassi F, Bertozzi F, Lewinsky R, Fejzic A, Thygesen MB, Tabatabaei A, Bradley SR, Gardell LR, Piu F, Olsson R. J. Med. Chem. 2009; 52: 7186
- 11 Lee J, Kim K.-H, Jeong S. Bioorg. Med. Chem. Lett. 2011; 21: 4203
- 12 Kumar RS, Rajesh SM, Perumal S, Banerjee D, Yogeeswari P, Sriram D. Eur. J. Med. Chem. 2010; 45: 411
- 13a Deng Z, Lin J.-H, Xiao J.-C. Nat. Commun. 2016; 7: 10337
- 13b Johnson CR, Ansari MI, Coop A. ACS Omega 2018; 3: 10886
- 14 Ullmann F. Ber. Dtsch. Chem. Ges. 1903; 36: 2382
- 15 Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1691
- 16 Vantourout JC, Law RP, Isidro-Llobet A, Atkinson SJ, Watson AJ. B. J. Org. Chem. 2016; 81: 3942
- 17 Cai Q, Zhou W. Chin. J. Chem. 2020; 38: 879
- 18a Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 18b Sharma C, Srivastava AK, Sharma D, Joshi RK. New J. Chem. 2022; 46: 8551
- 18c Ranjan A, Varma A, Kumari S, Joshi RK. Synlett 2022; 33: 1065
- 18d Kommuri VC, Tadiparthi K, Pawar L, Arunachalampillai A. Polycycl. Aromat. Compd. 2023; 43: 665
- 18e Sharifi A, Moazami M, Ghonouei N, Abaee MS, Mirzaei M. Sci. Iran. 2016; 23: 2742
- 19a Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 19b Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
- 19c Zhou W, Liu Y, Yang Y, Deng G.-J. Chem. Commun. 2012; 48: 10678
- 19d Geng Q, Zhang H, Cao W, Chen Y. Chin. J. Chem. 2009; 27: 1995
- 19e Tan Y, Hu H, Zhu W, Wang T, Gao T, Wang H, Chen J, Xu J, Xu S, Zhu H. Eur. J. Med. Chem. 2023; 262: 115881
- 19f Geng Q, Zhang H, Cao W, Chen Y. Chin. J. Chem. 2009; 27: 1995
- 19g Quach TD, Batey RA. Org. Lett. 2003; 5: 4397
- 19h Chaudhary K, Subodh, Prakash K, Mogha NK, Masram DT. Arabian J. Chem. 2020; 13: 4869
- 19i Chen Y.-H, Graßl S, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 1108
- 20a Borkin D, Morzhina E, Datta S, Rudnitskaya A, Sood A, Török M, Török B. Org. Biomol. Chem. 2011; 9: 1394
- 20b Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
- 20c Pratap R, Ram VJ. Tetrahedron 2017; 73: 2529
- 20d Pratap R, Raghunandan R, Kumar A, Ram VJ. RSC Adv. 2012; 2: 2688
- 21a Singh K, Nawabjan SA, Zhang L, El-Nezami H, Annapureddy RR, Chow BK. C. Eur. J. Med. Chem. 2022; 242: 114642
- 21b Borlinghaus N, Ansari TN, von Garrel LH, Ogulu D, Handa S, Wittmann V, Braje WM. Green Chem. 2021; 23: 3955
- 21c Hou Y, Dong Y, Ye T, Jiang J, Ding L, Qin M, Ding X, Zhao Y. Bioorg. Med. Chem. Lett. 2019; 29: 126746
- 21d Gordeev MF, Yuan ZY. J. Med. Chem. 2014; 57: 4487
- 21e Tabarrini O, Sabatini S, Massari S, Pieroni M, Franzblau SG, Cecchetti V. Chem. Biol. Drug Des. 2012; 80: 781
- 21f Iyobe A, Uchida M, Kamata K, Hotei Y, Kusama H, Harada H. Chem. Pharm. Bull. 2001; 49: 822
- 22 Tortolani DR, Poss MA. Org. Lett. 1999; 1: 1261
- 23 Kim J, Stoltz BM. Tetrahedron Lett. 2012; 53: 4994
- 24 Jia XD, Chen XN, De Huo C, Peng FF, Qing C, Wang XC. Chin. Chem. Lett. 2012; 23: 309
- 25 Gallagher MJ, Mann FG. J. Chem. Soc. 1962; 5110
- 26 Jiang Y, Zhu W, Huang J, Luo F, Chen X, Fang C, Chen X, Liu S, Hu Y, Zhang S. Org. Chem. Front. 2024; 11: 12
- 27 Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
- 28a Althagafi I, Shaw R, Tang C.-R, Panwar R, Sinha C, Kumar A, Zheng Y.-T, Pratap R. Org. Biomol. Chem. 2018; 16: 7477
- 28b Pratap R, Raghunandan R, Maulik PR, Ram VJ. Tetrahedron 2010; 66: 1458
- 28c Pratap R, Ram VJ. J. Org. Chem. 2007; 72: 7402
- 29a Yadav P, Shaw R, Panwar R, Sahu SN, Kumar A, Pratap R. Asian J. Org. Chem. 2017; 6: 1394
- 29b Pratap R, Raghunandan R, Maulik PR, Ram VJ. Tetrahedron Lett. 2007; 48: 7982
- 30a Pratap R, Kumar B, Ram VJ. Tetrahedron 2007; 63: 10309
- 30b Pratap R, Roy AD, Kushwaha SP, Roy R, Ram VJ. Tetrahedron Lett. 2007; 48: 5845
- 31 4-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles 4; General Procedure A mixture of acrylate 1 (20 mmol), the appropriate 1-tetralone 2 (22 mmol), and powdered KOH (30 mmol) was stirred in DMSO (30 mL) for 10–14 h at rt. The mixture was then poured onto crushed ice with vigorous stirring, and the resulting precipitate was collected by filtration, washed (H2O), dried, and crystallized from MeOH. The resulting intermediate 3 (4 mmol) was then refluxed with 1,4-dioxa-8-azaspiro[4.5]decane (4.4 mmol) in EtOH (15 mL) for 8 h until the reaction was complete (TLC). The mixture was then cooled to rt and the resulting precipitate was collected by filtration, dried, and crystallized from EtOH. 4-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-2-oxo-5,6-dihydro-2H-benzo[h]chromene-3-carbonitrile (4a) Yellow solid; yield: 65%. 1H NMR (400 MHz, CDCl3): δ = 1.89 (t, J = 5.86 Hz, 4 H, CH2), 2.65 (t, J = 8.05 Hz, 2 H, CH2), 2.86 (t, J = 8.05 Hz, 2 H, CH2), 3.64 (t, J = 5.86 Hz, 4 H, CH2), 3.99 (s, 4 H, OCH2), 7.22 (d, J = 7.32 Hz, 1 H, ArH), 7.30–7.39 (m, 2 H, ArH), 7.83 (d, J = 6.59 Hz, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 23.0, 27.6, 35.5, 49.7, 64.5, 81.5, 105.5, 108.7, 116.4, 124.5, 127.3, 127.4, 127.7, 131.4, 137.7, 157.2, 161.1, 167.2. 1-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-3-phenyl-9,10-dihydrophenanthrene-2-carbonitriles 7 and 1-(4-Oxopiperidin-1-yl)-3-phenyl-9,10-dihydrophenanthrene-2-carbonitriles 8; General Procedure The appropriate carbonitrile 4 (0.5 mmol), aryl methyl or aliphatic ketone 6 (0.5 mmol), and powdered KOH (0.75 mmol) were stirred in DMF (4 mL) for 5–6 h at rt until the reaction was complete (TLC). The mixture was then poured onto crushed ice and the solution was neutralized with 10% aq HCl. The precipitate was isolated by filtration, dried, and purified by chromatography (silica gel, 10% EtOAc–hexane) to give compound 7. The resulting compound 7 was stirred in formic acid for 1–2 h. The mixture was then poured into cold H2O and the precipitate was collected by filtration, dried, and recrystallized from MeOH to give product 8. 1-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-3-phenyl-9,10-dihydrophenanthrene-2-carbonitrile (7a). White solid; yield: 81%. 1H NMR (400 MHz, CDCl3): δ = 1.91 (br s, 4 H, CH2), 2.83–2.92 (m, 4 H, CH2), 3.4 (br s, 4 H, CH2), 4.00 (s, 4 H, OCH2), 7.26–7.30 (m, 3 H, ArH), 7.41–7.55 (m, 6 H, ArH), 7.69–7.71 (m, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 23.8, 28.5, 36.0, 49.1, 64.3, 107.1, 107.9, 118.3, 121.8, 124.7, 127.2, 128.0, 128.4, 128.5, 128.8, 128.9, 133.7, 134.3, 137.8, 138.9, 139.9, 145.4, 153.8. HRMS (ESI): m/z [M + H]+ calcd for C28H27N2O2: 423.2068; found: 423.2058. 1-(4-Oxopiperidin-1-yl)-3-phenyl-9,10-dihydrophenanthrene-2-carbonitrile (8a) White solid; yield: 88%. 1H NMR (400 MHz, CDCl3): δ = 2.67 (br s, 4 H, CH2), 2.86–2.90 (m, 2 H, CH2), 2.93–2.97 (m, 2 H, CH2), 3.62 (br s, 4 H, CH2), 7.29–7.34 (m, 3 H, ArH), 7.42–7.50 (m, 3 H, ArH), 7.55–7.57 (m, 2 H, ArH), 7.62 (s, 1 H, ArH), 7.71–7.74 (m, 1 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 23.8, 28.4, 42.9, 50.7, 108.3, 118.3, 122.6, 124.8, 127.3, 128.0, 128.6, 128.8, 129.1, 133.3, 134.5, 137.6, 138.5, 140.3, 145.6, 152.7, 208.3. HRMS (ESI): m/z [M + H]+ calcd for C26H23N2O: 379.1805; found: 379.1809.