Synlett 2024; 35(20): 2559-2663
DOI: 10.1055/a-2373-0372
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu

Studies toward the Synthesis of Colletotrichamide A: Construction of the C19–C30 Segment of the Molecule

Nemilikonda Sravan Kumar
a   Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
,
Radhakrishna Gattu
a   Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
,
B. Janaki Ramulu
a   Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
,
a   Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations
We are grateful to the Science and Engineering Research Board, Department of Science and Technology, India for funding this project (grant no. CRG/2022/001820) and to the UGC and CSIR for fellowships to N.S.K and R.K.G., respectively.


Abstract

A synthesis of the C19–C30 segment of the neuroprotective natural product colletotrichamide A has been achieved by performing a Sonogashira coupling of two advanced intermediate fragments: a vinyl iodide and an alkyne. A Maruoka–Keck allylation, an Evans syn-aldol reaction, and Takai olefinations served as the key steps in the synthesis of the vinyl iodide intermediate, whereas glycosidation and Ohira–Bestmann reactions were used as the pivotal steps for accessing the advanced alkyne intermediate.

Supporting Information



Publication History

Received: 14 June 2024

Accepted after revision: 23 July 2024

Accepted Manuscript online:
25 July 2024

Article published online:
22 August 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Heemels M.-T. Nature 2016; 539: 179
  • 2 GBD 2015 Neurological Disorders Collaborator Group 2017; 16: 877
  • 3 Kumar A, Singh AA, Ekavali Ekavali. Pharmacol. Rep. 2015; 67: 195
  • 4 Bang S, Lee C, Kim S, Song HJ, Kang SK, Deyrup ST, Nam J.-S, Xia X, Shim HS. J. Org. Chem. 2019; 84: 10999
    • 5a Chen J, Jian Y, Yan J, Xu C, Ye T. Molecules 2023; 28: 7194
    • 5b Fujii K, Ikai Y, Oka H, Suzuki M, Hrada K. Anal. Chem. 1997; 69: 5146
    • 6a Hanawa H, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2003; 125: 1708
    • 6b Yadav JS, Suresh B, Srihari P. Eur. J. Org. Chem. 2015; 5856
    • 6c de Fátima Â, Kohn LK, Antônio MA, de Carvalho JE, Pilli RA. Bioorg. Med. Chem. 2005; 13: 2927
  • 7 Yadav JS, Dhara S, Mohapatra DK. Tetrahedron 2017; 73: 1358
  • 8 Cachoux F, Isarno T, Wartmann M, Altmann K.-H. Angew. Chem. Int. Ed. 2005; 44: 7469
  • 9 Davies JA, Bull FM, Walker PD, Weir AN. M, Lavigne R, Masschelein J, Simpson TJ, Race PR, Crump MP, Willis CL. Org. Lett. 2020; 22: 6349
  • 10 Wang G, Yin N, Negishi E.-i. Chem. Eur. J. 2011; 17: 4118
  • 11 Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
    • 12a Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
    • 12b Evans DA, Trenkle WC, Zhang J, Burch JD. Org. Lett. 2005; 7: 3335
  • 13 Lafontaine JA, Provencal DP, Gardelli C, Leahy JW. J. Org. Chem. 2003; 68: 4215
  • 14 Peng Z.-H, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 6018
  • 15 Ramachandran PV, Srivastava A, Hazra D. Org. Lett. 2007; 9: 157
    • 16a Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
    • 16b Ghosh AK, Kassekert LA, Bungard JD. Org. Biomol. Chem. 2016; 14: 11357
  • 17 Loscher S, Schobert R. Chem. Eur. J. 2013; 19: 10619
    • 18a Lawandi J, Rocheleau S, Moitessier NJ. Tetrahedron 2011; 67: 8411
    • 18b Yang S, Liu Q, Zhang G, Zhang X, Zhao Z, Lei P. J. Org. Chem. 2018; 83: 5897
  • 20 Shepard MS, Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
  • 21 Borowski D, Oechsner RM, Jürgens E, Ziegler T. Eur. J. Org. Chem. 2017; 4490
  • 22 Itoh K, Huang Z, Liu H.-w. Org. Lett. 2007; 9: 879
  • 23 Ryu J.-H, Lee E, Lim Y.-b, Lee M. J. Am. Chem. Soc. 2007; 129: 4808
    • 24a El Sous M, Ganame D, Tregloan PA. Rizzacasa M. A. Org. Lett. 2004; 6: 3001
    • 24b Olpp T, Brückner R. Angew. Chem. Int. Ed. 2006; 45: 4023
    • 25a Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
    • 25b Zhou J, Gao B, Xu Z, Ye T. J. Am. Chem. Soc. 2016; 138: 6948
  • 26 (5R,6S)-5-[(2S,3S,4E,8R)-2-[(4-Methoxybenzyl)oxy]-3-meth­yl-8-({(2R,3S,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-[(benzyloxy)methyl]tetrahydro-2H-pyran-2-yl}oxy)non-4-en-6-yn-1-yl]-2,2,3,3,6,10,10-heptamethyl-9,9-diphenyl-4,8-dioxa-3,9-disilaundecane (28) Pd(PPh3)4 (231 mg, 0.20 mmol) and CuI (152 mg, 0.80 mmol) were added to a solution of vinyl iodide 9 (300 mg, 0.40 mmol), alkyne 10 (271 mg, 0.46 mmol), and Et3N (86 μL, 0.60 mmol) in anhyd THF (10 mL) under argon at rt, and the mixture was stirred at rt for 5 h. The reaction was then quenched with sat. aq of NH4Cl (15 mL) and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with brine (10 mL), dried (Na2SO4), and concentrated in vacuo. The residue was purified by gel column chromatography [silica gel (100–200 mesh), 10% EtOAc–hexane] to give a white solid; yield: 415 mg (87%); Rf = 0.5 (silica gel, 20% EtOAc–hexane); [α]D 25 –5.9 (c 1.2, CHCl3). IR (neat): 3065, 3031, 2955, 2928, 1612, 1587, 1513, 1438, 1249, 1105, 1066, 824, 738 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.72–7.68 (m, 1 H), 7.65–7.60 (m, 4 H), 7.56–7.50 (m, 1 H), 7.49–7.45 (m, 2 H), 7.42–7.31 (m, 9 H), 7.29–7.25 (m, 10 H), 7.24–7.22 (m, 2 H), 7.21–7.17 (m, 3 H), 6.86–6.80 (m, 2 H), 6.20 (dd, J = 16.0, 7.1 Hz, 1 H), 5.47 (d, J = 16.0 Hz, 1 H), 4.99 (d, J = 12.4 Hz, 1 H), 4.88 (q, J = 7.7 Hz, 2 H), 4.72 (q, J = 6.3 Hz, 1 H), 4.67–4.43 (m, 6 H), 4.38 (s, 2 H), 4.22 (t, J = 6.1 Hz, 1 H), 3.93–3.84 (m, 2 H), 3.80–3.77 (m, 2 H), 3.75 (s, 3 H), 3.61 (dd, J = 10.0, 7.5 Hz, 1 H), 3.53 (dd, J = 9.3, 2.7 Hz, 1 H), 3.50–3.40 (m, 3 H), 2.48 (t, J = 7.7 Hz, 1 H), 2.34 (t, J = 7.5 Hz, 1 H), 1.95–1.89 (m, 1 H), 1.70–1.67 (m, 1 H), 1.49 (d, J = 6.6 Hz, 3 H), 1.04 (s, 9 H), 0.93 (dd, J = 6.7, 2.2 Hz, 3 H), 0.88 (d, J = 6.4 Hz, 3 H), 0.83 (s, 9 H), 0.00 (s, 3 H), –0.02 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.1, 147.8, 138.9, 138.6, 138.5, 138.3, 135.6, 135.4, 135.3, 135.2, 133.9, 133.8, 131.8, 131.0, 130.3, 129.7, 129.3, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.7, 127.6, 127.4, 127.3, 113.8, 108.9, 99.0, 87.7, 84.2, 82.6, 78.8, 76.2, 75.2, 74.9, 74.1, 74.0, 73.6, 71.5, 71.3, 70.5, 69.7, 66.0, 65.1, 55.3, 41.1, 39.6, 34.0, 27.0, 26.0, 22.3, 19.3, 18.1, 13.6, 12.3, –4.0, –4.2. MS (ESI): m/z = 1268 [M + NH4]+. HRMS (ESI): m/z [M + NH4]+ calcd for : 1268.7042; found: 1268.7081