Rofo
DOI: 10.1055/a-2379-8857
Interventional Radiology

Endovascular therapy in intermittent claudication: Impact of IVUS guidance on treatment decisions

Einfluss des IVUS auf die endovaskuläre Therapie bei Claudicatio intermittens
Viktor Hartung
1   Department of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany (Ringgold ID: RIN27207)
,
Anne Marie Augustin
2   Department of Interventional and Diagnostic Radiology, Klinikum Bayreuth GmbH, Bayreuth, Germany (Ringgold ID: RIN15019)
,
Philipp Gruschwitz
1   Department of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany (Ringgold ID: RIN27207)
,
3   Department of Radiology, University of Wisconsin-Madison, Madison, United States (Ringgold ID: RIN5228)
,
Jonas Knarr
4   Institute of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany (Ringgold ID: RIN27207)
,
Ralph Kickuth
4   Institute of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany (Ringgold ID: RIN27207)
› Author Affiliations

Abstract

Background and Aims

Conservative therapy is favored over revascularization for patients with peripheral arterial disease (PAD) and intermittent claudication (IC) owing to the better long-term results. The adjunctive use of intravascular ultrasound (IVUS) significantly improves endovascular therapy. However, data on IVUS and IC is scarce. Therefore, the aim of this investigation was to determine the safety and efficacy of IVUS in patients with IC and to evaluate discrepancies compared to angiography and potential consequences for treatment.

Methods

This was a single-center prospective cohort study. Twenty patients with IC and femoropopliteal disease eligible for endovascular therapy were enrolled. Procedural data and discrepancies between IVUS and angiography were recorded.

Results

In total, 30 lesions were treated. IVUS-based measurements yielded substantially higher reference vessel diameters (RVD) and lesion lengths compared to DSA alone (RVD: 5.37 ± 0.71 mm vs. 4.74 ± 0.63 mm, p<.001, lesion length: 62.4 ± 41.4 mm vs. 42.18 ± 30.2 mm, p<.001). In 24 of 30 lesions (80%), a significant discrepancy in RVD (defined as difference >0.5 mm) and lesion length (defined as >20 mm) was determined between IVUS and standard DSA. Subsequently, IVUS assessment led to upsizing in 14 of 30 lesions (47%) and downsizing in 3 of 30 lesions (10%). On average, IVUS led to the selection of considerably larger balloons (5.25 ± 0.62 vs. 4.74 ± 0.63, p<.004) and device length (78.97 ± 44.19 mm vs. 42.18 ± 30.2, p<.001). Serious adverse events did not occur. Technical success was achieved in all cases.

Conclusion

IVUS is safe and provides advantages regarding the evaluation of IC by depicting RVD and lesion length more reliably than standard DSA. More precise assessment of lesions resulted in the use of significantly larger devices.

Key Points

  • The safety and efficacy of IVUS are confirmed for the distinct cohort of patients with IC.

  • IVUS provides advantages for the evaluation of IC by depicting RVD and lesion length more reliably than standard DSA.

  • More precise assessment of stenoses resulted in the selection of significantly larger devices, hence suggesting substantial clinical impact.

Citation Format

Hartung V, Augustin AM, Gruschwitz P et al. Endovascular therapy in intermittent claudication: Impact of IVUS guidance on treatment decisions. Fortschr Röntgenstr 2024; DOI 10.1055/a-2379-8857

Zusammenfassung

Hintergrund und Ziele

Aufgrund des besseren Langzeitergebnisses wird für Patienten mit peripherer arterieller Verschlusskrankheit (pAVK) und Claudicatio intermittens (CI) die konservative Therapie der Revaskularisation vorgezogen. Die Verwendung des intravaskulären Ultraschalls (IVUS) verbessert das Ergebnis der endovaskulären Therapie signifikant. Jedoch gibt es diesbezüglich kaum Daten für Patienten mit CI. Daher ist das Ziel dieser Studie, die Sicherheit und Effektivität des IVUS für Patienten mit CI zu untersuchen. Weiterhin soll die Diskrepanz zwischen IVUS und Angiografie und mögliche Konsequenzen für die Behandlung beurteilt werden.

Methoden

In einer einzentrischen prospektiven Kohortenstudie wurden 20 Patienten mit CI, femoropoplitealer Erkrankung und Indikation zur endovaskulären Therapie eingeschlossen. Prozedurbezogene Daten, sowie Diskrepanzen zwischen IVUS und Angiografie wurden erfasst.

Ergebnisse

Insgesamt wurden 30 Läsionen behandelt. IVUS-basierte Messungen lieferten signifikant höhere Referenzgefäßdurchmesser (RGD) und Läsionslängen im Vergleich zur Angiografie (RGD: 5,37 ± 0,71 mm vs. 4,74 ± 0,63 mm, p<.001, Läsionslänge: 62,4 ± 41,4 mm vs. 42,18 ± 30,2 mm, p<.001). Bei 24 von 30 Läsionen (80%) fand sich ein signifikanter Unterschied im RGD (definiert als ein Unterschied >0,5 mm) und der Läsionslänge (definiert als >20 mm). Durch den IVUS wurde bei 14 von 30 Läsionen eine größere Ballongröße gewählt (47%), bei 3 von 30 (10%) eine kleinere. Im Mittel wurden durch den IVUS signifikant größere Ballons (5,25 ± 0,62 mm vs. 4,74 ± 0,63 mm, p<.004) und längere Materialien gewählt (78,97 ± 44,19 mm vs. 42,18 ± 30,2, p<.001). Alle Interventionen waren technisch erfolgreich. Schwerwiegende unerwünschte Ereignisse traten nicht auf.

Schlussfolgerungen

IVUS ist sicher und durch die zuverlässigere Beurteilung des RGD und der Läsionslänge der alleinigen angiografischen Beurteilung der Gefäßläsionen überlegen. Eine präzisere Beurteilung der Läsionen führte zum Einsatz größerer und längerer Devices.

Kernaussagen

  • Die Sicherheit und Wirksamkeit des IVUS bestätigt sich für die spezielle Kohorte der Patienten mit Claudicatio intermittens.

  • IVUS ist zuverlässiger als die DSA für die Beurteilung des Referenzgefäßdurchmessers und der Läsionslänge.

  • Die präzisere Beurteilung von Stenosen führte zur Wahl signifikant größerer Devices, welches die klinische Bedeutsamkeit nahelegt.

Supplementary Material



Publication History

Received: 20 April 2024

Accepted after revision: 29 July 2024

Article published online:
05 September 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Olinic DM, Spinu M, Olinic M. et al. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int Angiol 2018; 37: 327-334 DOI: 10.23736/S0392-9590.18.03996-2. (PMID: 29936722)
  • 2 Fowkes FG, Rudan D, Rudan I. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382: 1329-1340 DOI: 10.1016/S0140-6736(13)61249-0. (PMID: 23915883)
  • 3 Conte MS, Pomposelli FB. Society for Vascular Surgery Lower Extremity Guidelines Writing G. et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg 2015; 61: 2S-41S DOI: 10.1016/j.jvs.2014.12.009.
  • 4 Aboyans V, Ricco JB, Bartelink MEL. et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018; 39: 763-816 DOI: 10.1093/eurheartj/ehx095.
  • 5 Djerf H, Millinger J, Falkenberg M. et al. Absence of Long-Term Benefit of Revascularization in Patients With Intermittent Claudication: Five-Year Results From the IRONIC Randomized Controlled Trial. Circ Cardiovasc Interv 2020; 13: e008450 DOI: 10.1161/CIRCINTERVENTIONS.119.008450.
  • 6 Madabhushi V, Davenport D, Jones S. et al. Revascularization of intermittent claudicants leads to more chronic limb-threatening ischemia and higher amputation rates. J Vasc Surg 2021; 74: 771-779 DOI: 10.1016/j.jvs.2021.02.045. (PMID: 33775749)
  • 7 Arthurs ZM, Bishop PD, Feiten LE. et al. Evaluation of peripheral atherosclerosis: a comparative analysis of angiography and intravascular ultrasound imaging. J Vasc Surg 2010; 51: 933-938 DOI: 10.1016/j.jvs.2009.11.034.
  • 8 Kashyap VS, Pavkov ML, Bishop PD. et al. Angiography underestimates peripheral atherosclerosis: lumenography revisited. J Endovasc Ther 2008; 15: 117-125 DOI: 10.1583/07-2249R.1. (PMID: 18254670)
  • 9 Allan RB, Puckridge PJ, Spark JI. et al. The Impact of Intravascular Ultrasound on Femoropopliteal Artery Endovascular Interventions: A Randomized Controlled Trial. JACC Cardiovasc Interv 2022; 15: 536-546 DOI: 10.1016/j.jcin.2022.01.001. (PMID: 35272779)
  • 10 Iida O, Takahara M, Soga Y. et al. Efficacy of intravascular ultrasound in femoropopliteal stenting for peripheral artery disease with TASC II class A to C lesions. J Endovasc Ther 2014; 21: 485-492 DOI: 10.1583/14-4721R.1.
  • 11 Panaich SS, Arora S, Patel N. et al. Intravascular Ultrasound in Lower Extremity Peripheral Vascular Interventions: Variation in Utilization and Impact on In-Hospital Outcomes From the Nationwide Inpatient Sample (2006–2011). J Endovasc Ther 2016; 23: 65-75 DOI: 10.1177/1526602815620780.
  • 12 Norgren L, Hiatt WR, Dormandy JA. et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 2007; 45: S5-67 DOI: 10.1016/j.jvs.2006.12.037. (PMID: 17223489)
  • 13 Saito Y, Kobayashi Y, Fujii K. et al. Clinical expert consensus document on standards for measurements and assessment of intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 2020; 35: 1-12 DOI: 10.1007/s12928-019-00625-6.
  • 14 Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014; 83: E212-220 DOI: 10.1002/ccd.25387. (PMID: 24402839)
  • 15 Khalilzadeh O, Baerlocher MO, Shyn PB. et al. Proposal of a New Adverse Event Classification by the Society of Interventional Radiology Standards of Practice Committee. J Vasc Interv Radiol 2017; 28: 1432-1437 e1433 DOI: 10.1016/j.jvir.2017.06.019. (PMID: 28757285)
  • 16 Krishnan P, Tarricone A, Purushothaman KR. et al. Intravascular ultrasound guided directional atherectomy versus directional atherectomy guided by angiography for the treatment of femoropopliteal in-stent restenosis. Ther Adv Cardiovasc Dis 2018; 12: 17-22 DOI: 10.1177/1753944717745509. (PMID: 29265002)
  • 17 Kumakura H, Kanai H, Araki Y. et al. 15-Year Patency and Life Expectancy After Primary Stenting Guided by Intravascular Ultrasound for Iliac Artery Lesions in Peripheral Arterial Disease. JACC Cardiovasc Interv 2015; 8: 1893-1901 DOI: 10.1016/j.jcin.2015.08.020. (PMID: 26604061)
  • 18 Naiem AA, Doonan RJ, Steinmetz OK. et al. Outcomes of endovascular treatment of patients with intermittent claudication due to femoropopliteal disease. Vascular 2022; 30: 882-890 DOI: 10.1177/17085381211039668.
  • 19 Miki K, Fujii K, Tanaka T. et al. Impact of IVUS-Derived Vessel Size on Midterm Outcomes After Stent Implantation in Femoropopliteal Lesions. J Endovasc Ther 2020; 27: 77-85 DOI: 10.1177/1526602819896293. (PMID: 31948376)
  • 20 Baker AC, Humphries MD, Noll RE. et al. Technical and early outcomes using ultrasound-guided reentry for chronic total occlusions. Ann Vasc Surg 2015; 29: 55-62 DOI: 10.1016/j.avsg.2014.10.011. (PMID: 25449989)
  • 21 Fujihara M, Kozuki A, Tsubakimoto Y. et al. Lumen Gain After Endovascular Therapy in Calcified Superficial Femoral Artery Occlusive Disease Assessed by Intravascular Ultrasound (CODE Study). J Endovasc Ther 2019; 26: 322-330 DOI: 10.1177/1526602819836095. (PMID: 30873909)
  • 22 Shammas NW, Torey JT, Shammas WJ. et al. Intravascular Ultrasound Assessment and Correlation With Angiographic Findings Demonstrating Femoropopliteal Arterial Dissections Post Atherectomy: Results From the iDissection Study. J Invasive Cardiol 2018; 30: 240-244
  • 23 Yin D, Maehara A, Shimshak TM. et al. Intravascular Ultrasound Validation of Contemporary Angiographic Scores Evaluating the Severity of Calcification in Peripheral Arteries. J Endovasc Ther 2017; 24: 478-487 DOI: 10.1177/1526602817708796. (PMID: 28504047)
  • 24 Soga Y, Takahara M, Iida O. et al. Relationship Between Primary Patency and Lesion Length Following Bare Nitinol Stent Placement for Femoropopliteal Disease. J Endovasc Ther 2015; 22: 862-867 DOI: 10.1177/1526602815610118.
  • 25 Kobayashi N, Hirano K, Yamawaki M. et al. Simple classification and clinical outcomes of angiographic dissection after balloon angioplasty for femoropopliteal disease. J Vasc Surg 2018; 67: 1151-1158 DOI: 10.1016/j.jvs.2017.08.092. (PMID: 29242063)
  • 26 Okuno S, Iida O, Shiraki T. et al. Impact of Calcification on Clinical Outcomes After Endovascular Therapy for Superficial Femoral Artery Disease: Assessment Using the Peripheral Artery Calcification Scoring System. J Endovasc Ther 2016; 23: 731-737 DOI: 10.1177/1526602816656612. (PMID: 27369975)
  • 27 Pliagas G, Saab F, Stavroulakis K. et al. Intravascular Ultrasound Imaging Versus Digital Subtraction Angiography in Patients with Peripheral Vascular Disease. J Invasive Cardiol 2020; 32: 99-103
  • 28 Bertrand OF, De Larochelliere R, Joyal M. et al. Incidence of stent under-deployment as a cause of in-stent restenosis in long stents. Int J Cardiovasc Imaging 2004; 20: 279-284 DOI: 10.1023/b:caim.0000041947.11384.93. (PMID: 15529909)