Subscribe to RSS
DOI: 10.1055/s-0028-1087350
N,N′-(Phenylmethylene)diacetamide Analogues as Economical and Efficient Ligands in Copper-Catalyzed Arylation of Aromatic Nitrogen-Containing Heterocycles
Publication History
Publication Date:
12 November 2008 (online)
Abstract
N,N′-(Phenylmethylene)diacetamide analogues which were simply prepared from the condensation reaction of an aldehyde with an amide or urea were found to be efficient ligands in copper-catalyzed coupling reaction of aryl halides with various azole nucleophiles. The newly developed ligand showed broad application scope in this conversion. Compounds including imidazoles, benzoimidazoles, pyrrole, indole, and benzotriazole were successfully arylated with diversified aromatic halides to give corresponding products in moderate to excellent yields.
Key words
N,N′-(phenylmethylene)diacetamide - economical - ligand - copper - arylation
- Supporting Information for this article is available online:
- Supporting Information
- For general examples, see
-
1a
Mano T.Okumura Y.Sakakibara M.Okumura T.Miyamoto K.Stevens RW. J. Med. Chem. 2004, 47: 720 -
1b
Wiglenda T.Ott I.Kircher B.Schuster D.Langer T.Gust R. J. Med. Chem. 2005, 48: 6516 -
1c
Hartwig JF. Synlett 1997, 329 -
1d
Hartwig JF. Acc. Chem. Res. 1998, 31: 852 -
1e
Zhong C.He J.Xue C.Li Y. Bioorg. Med. Chem. 2004, 12: 4009 -
1f
Shirota Y. J. Mater. Chem. 2000, 10: 1 - 2
Ullmann F. Ber. Dtsch. Chem. Ges. 1903, 36: 2382 -
3a
Wolfe JP.Wagaw S.Buchwald SL. J. Am. Chem. Soc. 1996, 118: 7215 -
3b
Wolfe JP.Wagaw S.Marcoux JF.Buchwald SL. Acc. Chem. Res. 1998, 31: 805 - 4
Driver MS.Hartwig JF. J. Am. Chem. Soc. 1996, 118: 7217 - For recent reviews, see:
-
5a
Ley SL.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
5b
Kunz K.Scholz U.Ganzer D. Synlett 2003, 2428 -
5c
Beletskaya IP.Cheprakov AV. Coord. Chem. Rev. 2004, 2337-2347: 721 -
6a
Hassan J.Sevignon M.Gozzi C.Schultz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
6b
Lindley J. Tetrahedron 1984, 40: 4133 -
6c
Tailefer M.Xia N.Ouali A. Angew. Chem. Int. Ed. 2007, 46: 934 -
6d
Lam PYS.Deudon S.Averill KM.Li R.He MY.Deshong P.Clark CG. J. Am. Chem. Soc. 2000, 122: 7600 -
6e
Elliott GI.Konopelski JP. Org. Lett. 2000, 2: 3055 - For selected examples, see:
-
7a
Klapars A.Antilla JC.Huang X.Buchwald SL. J. Am. Chem. Soc. 2001, 123: 7727 -
7b
Klapars A.Huang X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 7421 -
7c
Anrilla JC.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 11684 -
7d
Klapars A.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 14844 -
7e
Zanon J.Klapars A.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 2890 -
7f
Wolter M.Klapars A.Buchwald SL. Org. Lett. 2001, 3: 3803 -
8a
Zhang H.Cai Q.Ma D. J. Org. Chem. 2005, 70: 5164 -
8b
Ma D.Zhang Y.Yao J.Wu S.Tao F. J. Am. Chem. Soc. 1998, 120: 12459 -
8c
Ma D.Xia C. Org. Lett. 2001, 3: 2583 -
8d
Ma D.Cai Q.Zhang H. Org. Lett. 2003, 5: 2453 -
8e
Zhu W.Ma D. Chem. Commun. 2004, 1934 -
8f
Guo X.Rao H.Fu H.Jiang Y.Zhao Y. Adv. Synth. Catal. 2006, 348: 2197 -
8g
Lv X.Wang Z.Bao W. Tetrahedron 2006, 62: 4756 -
9a
Cristau HJ.Cellier PP.Spindler JF.Tailefer M. Chem. Eur. J. 2004, 10: 5607 -
9b
Kuil M.Bekedam EK.Visser GM.van Leeuwen PWNM.van Strijdonck GPF. Tetrahedron Lett. 2005, 46: 2405 -
10a
Rao H.Jin Y.Fu H.Jiang Y.Zhao Y. Chem. Eur. J. 2006, 12: 3636 -
10b
Rao H.Fu H.Jiang Y.Zhao Y. J. Org. Chem. 2005, 70: 8107 -
10c
Xu L.Zhu D.Wu F.Wang R.Wan B. Tetrahedron 2005, 61: 6553 -
10d
Zhang Z.Mao J.Zhu D.Wu F.Chen H.Wan B. Tetrahedron 2006, 62: 4435 - 11
Ma H.Jiang X. J. Org. Chem. 2007, 72: 8943 - 12
Verma AK.Singh J.Sankar VK.Chaudhary R.Chandra R. Tetrahedron Lett. 2007, 48: 4207 - 13
Liu L.Frohn M.Xi N.Domingurez C.Hungate R.Reider PJ. J. Org. Chem. 2005, 70: 10135 - 14
Altman RA.Buchwald SL. Org. Lett. 2006, 8: 2779 - 15
Lv X.Bao W. J. Org. Chem. 2007, 72: 3863 - 16
Xie Y.Pi S.Wang J.Yin D.Li J. J. Org. Chem. 2006, 71: 8324 - 17
Mino T.Harada Y.Shindo H.Sakamoto M.Fujita T. Synlett 2008, 614 -
18a
Zhu L.Cheng L.Zhang Y.Xie R.You J. J. Org. Chem. 2007, 72: 2737 -
18b
Zhu L.Guo P.Li G.Lan J.Xie R.You J. J. Org. Chem. 2007, 72: 8535
References and Notes
Preparation of
Ligands L1a-c
Benzaldehyde (10 mmol) and
the corresponding amide (20 mmol) were added to the vessel with
5 mL MeCN (5 mL), and TMSCl (30 mol%) was applied as catalyst.
The mixture was refluxed for 8 h. The crude product precipitated
from the solution. The analytical pure product was obtained in 94%, 78%,
and 92% yield, respectively, by washing with MeCN (3 mL).
Ligand L1a: ¹H NMR (500 MHz,
DMSO-d
6): δ = 8.50
(d,
2 H), 7.38-7.27 (m, 5 H), 6.52 (t, 1 H),
1.86 (s, 6 H). ¹³C NMR (125 MHz, DMSO-d
6): δ = 169.5,
141.5, 129.2, 128.4, 127.3, 58.2, 23.4. ESI-MS: m/z = 229 [M + Na]+.
Preparation of L2a-2c
Benzaldehyde
(10 mmol) and substituted urea (20 mmol) were mixed with MeCN (5
mL) and stirred at r.t. for 5 h. The corresponding product were
furnished in quantitative yield after removal of solvent.
Ligand L2a: ¹H NMR (500 MHz,
DMSO-d
6): δ = 7.31
(s,
4 H), 7.24 (s, 1 H), 6.63 (d, 2 H), 6.17 (s, 1 H),
5.96 (s, 2 H), 2.55 (s, 6 H). ¹³C NMR
(125 MHz, DMSO-d
6): δ = 158.6, 143.8,
129.0, 127.9, 127.0, 60.3, 27.2. ESI-MS: 259 [M + Na]+.
Preparation of L3
Paraformaldehyde
(0.6 g) and acetamide (20 mmol) were mixed in MeCN (5 mL), the mixture
was refluxed at 110 ˚C for 10 h to give L3 in
75% yield.
Ligand L3: ¹H
NMR (500 MHz, DMSO-d
6): δ = 6.44
(t,
2 H), 5.94 (s, 2 H), 4.22 (t, 2 H), 2.53 (d, 6 H). ¹³C
NMR (125 MHz, DMSO-d
6): δ = 159.8,
47.0, 27.4. ESI-MS: 183 [M + Na]+.
General Experimental Procedure for the Arylation
of Azole
Azole (0.5 mmol), aromatic halide (0.5 mmol),
CuI (10 mol%), ligand (10 mol%) and NaOMe (1 mmol)
were located in a flask with DMSO (1.5 mL). The mixture was heated
at the corresponding temperature for 12 h. The reaction mixture
was filtrated by SiO2 and extracted with EtOAc (3 × 8
mL). The combined organic was concentrated and subjected to SiO2 column
to give target products.
Compound 3j:
mp 247-250 ˚C. ¹H NMR (500
MHz, CDCl3): δ = 7.94
(s, 1 H), 7.59 (d, 2 H), 7.52 (d, 2 H), 7.41-7.37 (m, 4
H), 7.27 (s, 1 H), 7.19 (s, 1 H). ¹³C
NMR (125 MHz, CDCl3): δ = 139.7,
138.8, 136.8, 135.7, 132.3, 130.2, 128.8, 128.6, 122.4, 122.1, 118.6.
ESI-MS: 299 [M + H]+.
Compound 4c(liquid): ¹H NMR
(500 MHz, CDCl3): δ = 8.60-8.57
(m, 2 H), 8.06 (t, 1 H), 7.88-7.85 (m, 2 H), 7.55 (d, 1
H), 7.38-7.35 (m, 2 H), 7.29-7.26 (m, 1 H). ¹³C NMR
(125 MHz, CDCl3): δ = 150.0,
149.6, 144.8, 141.5, 139.1, 132.3, 124.4, 123.5, 122.0, 120.8, 114.5,
112.8. ESI-MS: 196 [M + H]+.