Subscribe to RSS
DOI: 10.1055/s-0029-1217747
Catalytic Addition of Simple Alkenes to Carbonyl Compounds by Use of Group 10 Metals
Publication History
Publication Date:
04 September 2009 (online)
Abstract
Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon-carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, and conjugated aldehydes and ketones, are discussed. In these reactions, the olefins function as vinyl- and allylmetal equivalents, providing a new strategy for organic synthesis. Current limitations and the outlook for this new strategy are also discussed.
1 Introduction
2 Carbonyl-Ene-Type Reactions
2.1 Reactions Catalyzed by Group 10 Cationic Complexes as Lewis Acids
2.2 Reactions Catalyzed by Low-Valent Nickel(0) Complexes
3 Unactivated Monosubstituted Alkenes as Vinylmetal Equivalents
3.1 Intramolecular Reactions with Aldehydes and Ketones
3.2 Intermolecular Reactions with Aldehydes
3.3 Synthesis of Acrylamides with Isocyanates
3.4 Conjugate Addition to α,β-Unsaturated Aldehydes and Ketones
4 Intramolecular Insertion of Alkenes into Cyclobutanones
5 Limitations and Outlook
Key words
alkenes - transition-metal catalysis - carbon-carbon bond formation - carbonyl-ene reactions - addition reactions
- 1
Alpha
Olefins Applications Handbook
Lappin GR.Sauer JD. M. Dekker; New York: 1989. -
2a
Organometallic Catalysts and Olefin Polymerization
Blom R. Springer; New York: 2001. -
2b
Special Issue ‘Frontiers in Metal-Catalyzed Polymerization’ (Gladysz,
J. A., Guest Ed.): ; Chem. Rev.; 2000, 100: 1167-1682 - 3
Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis John Wiley & Sons; New York: 1995. -
4a For
a recent review on epoxidation, see:
Catalytic Asymmetric
Synthesis
Ojima I. Wiley-VCH; Weinheim: 2000. -
4b
Shi Y. Acc. Chem. Res. 2004, 37: 488 -
4c
Yang D. Acc. Chem. Res. 2004, 37: 497 -
4d For reviews on dihydroxylation,
see:
Xia Q.-H.Ge H.-Q.Ye C.-P.Liu Z.-M.Su K.-X. Chem. Rev. 2005, 105: 1603 -
4e
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
4f
Bolm C.Hildebrand JP.Muniz K. Recent Advances in Asymmetric Dihydroxylation and Aminohydroxylation in Catalytic Asymmetric Synthesis 2nd ed.:Ojima I. Wiley-VCH; Weinheim: 2000. p.399 -
4g
Sundermeier U.Döbler C.Beller M. In Modern Oxidation MethodsBäckvall J.-E. Wiley-VCH; Weinheim: 2004. p.1-20 -
4h
Kobayashi S.Sugiura M. Adv. Synth. Catal. 2006, 348: 1496 -
5a For
reviews, see:
Handbook of Metathesis
Grubbs RH. John Wiley & Sons; New York: 2003. -
5b
Grubbs RH. Tetrahedron 2004, 60: 7117 -
5c
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 - For reviews on the Heck reaction and related palladium hydride chemistry, see:
-
6a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
6b
Negishi E.-i. Handbook of Organopalladium Chemistry for Organic Synthesis Wiley-Interscience; New York: 2002. - The carbonyl-ene reaction was first reported by Alder in 1943:
-
7a
Alder K.Pascher F.Schmitz A. Ber. Dtsch. Chem. Ges. 1943, 76: 27 -
7b For reviews on the carbonyl-ene
and Prins reactions, see:
Snider BB. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.527 -
7c
Hoffmann HMR. Angew. Chem., Int. Ed. Engl. 1969, 8: 556 -
7d
Adams DR.Bhatnagar SP. Synthesis 1977, 661 -
7e
Oppolzer W.Snieckus V. Angew. Chem., Int. Ed. Engl. 1978, 17: 476 -
7f
Snider BB. Acc. Chem. Res. 1980, 13: 426 -
7g
Mikami K.Shimizu M. Chem. Rev. 1992, 92: 1021 -
7h
Berrisford DJ.Bolm C. Angew. Chem. Int. Ed. 1995, 34: 1717 -
7i
Dias LC. Curr. Org. Chem. 2000, 4: 305 -
7j
Overman LE.Pennington LD. J. Org. Chem. 2003, 68: 7143 -
7k
Pastor IM.Yus M. Curr. Org. Chem. 2007, 11: 925 -
7l
Clarke ML.France MB. Tetrahedron 2008, 64: 9003 -
7m
Ding K. Chem. Commun. 2008, 909 -
8a
Snider BB.Rodini DJ. Tetrahedron Lett. 1980, 21: 1815 -
8b
Snider BB.Rodini DJ.Kirk TC.Cordova R. J. Am. Chem. Soc. 1982, 104: 555 -
8c
Majewski M.Bantle GW. Synth. Commun. 1990, 20: 2549 -
8d
Houston TA.Tanaka Y.Koreeda M. J. Org. Chem. 1993, 58: 4287 -
8e
Aggarwal VK.Vennall GP.Davey PN.Newman C. Tetrahedron Lett. 1998, 39: 1997 -
8f
Ellis WW.Odenkirk W.Bosnich B. Chem. Commun. 1998, 1311 -
8g
Loh T.-P.Feng L.-C.Yang J.-Y. Synthesis 2002, 937 - 9 One isolated example of a carbonyl-ene
reaction of an aromatic aldehyde and a monosubstituted alkene has
been described (yield not reported):
Epifani E.Florio S.Ingrosso G. Tetrahedron 1988, 44: 5869 - For intramolecular examples using sterically demanding aldehydes, see:
-
10a
Andersen NH.Hadley SW.Kelly JD.Bacon ER. J. Org. Chem. 1985, 50: 4144 -
10b
Fujita M.Shindo M.Shishido K. Tetrahedron Lett. 2005, 46: 1269 - 11 For pioneering examples employing α-olefins
with aliphatic aldehydes, see:
Snider BB.Phillips GB. J. Org. Chem. 1983, 48: 464 -
13a
Ng S.-S.Jamison TF. J. Am. Chem. Soc. 2005, 127: 14194 -
13b
Ho C.-Y.Ng S.-S.Jamison TF. J. Am. Chem. Soc. 2006, 128: 5362 -
13c
Ng S.-S.Ho C.-Y.Jamison TF. J. Am. Chem. Soc. 2006, 128: 11513 -
13d For the use of isocyanates
as electrophiles, see:
Ho C.-Y.Jamison TF. Angew. Chem. Int. Ed. 2007, 46: 782 -
13e
Schleicher KD.Jamison TF. Org. Lett. 2007, 9: 875 -
13f For the use of enal and
enol as electrophiles, see:
Ng S.-S.Ho C.-Y.Schleicher KD.Jamison TF. Pure Appl. Chem. 2008, 80: 929 -
13g
Ho C.-Y.Ohmiya H.Jamison TF. Angew. Chem. Int. Ed. 2008, 47: 1893 - 14
Achmatowicz O.Szechner B. J. Org. Chem. 1972, 37: 964 -
15a
Whitesell JK.Bhattacharya A.Aguilar DA.Henke K. J. Chem. Soc., Chem. Commun. 1982, 989 -
15b
Whitesell JK.Lawrence RM.Chen HH. J. Org. Chem. 1986, 51: 4779 -
15c
Whitesell JK.Bhattacharya A.Buchanan CM.Chen HH.Deyo D.James D.Liu C.-L.Minton MA. Tetrahedron 1986, 42: 2993 - For the use of a chiral aluminum-BINOL complex, see:
-
16a For representative examples
on enantioselective catalysis of carbonyl-ene reactions
by titanium complexes, see:
Maruoka K.Hoshino Y.Shirasaka T.Yamamoto H. Tetrahedron Lett. 1988, 29: 3967 -
16b
Mikami K.Terada M.Nakai T. J. Am. Chem. Soc. 1989, 111: 1940 -
16c
Mikami K.Sawa E.Terada M. Tetrahedron: Asymmetry 1991, 2: 1403 -
16d For the use of a chiral bis(oxazoline)copper(II)
complex, see:
Mikami K.Koizumi Y.Osawa A.Terada M.Takayama H.Nakagawa K.Okano T. Synlett 1999, 1899 -
16e
Evans DA.Burgey CS.Paras NA.Vojkovsky T.Tregay SW. J. Am. Chem. Soc. 1998, 120: 5824 - For pioneering work on intermolecular reactions employing chiral palladium(II) complexes, see:
-
17a For highly enantioselective
ene-type cyclizations catalyzed by chiral palladium complexes bearing
BINAP derivatives, see:
Hao J.Hatano M.Mikami K. Org. Lett. 2000, 2: 4059 -
17b
Hatano M.Terada M.Mikami K. Angew. Chem. Int. Ed. 2001, 40: 249 - Other representative examples reported in 2008 employing metal catalyst centers other than group 10 or Brønsted acids. For enantioselective catalytic carbonyl-ene cyclization reactions by a chromium(III) complex, see:
-
18a For such reactions catalyzed
by an indium(III)-PyBox complex, see:
Grachan ML.Tuidge MT.Jacobsen EN. Angew. Chem. Int. Ed. 2008, 47: 1469 -
18b For organocatalytic chiral
Brønsted acids, see:
Zhao J.-F.Tsui H.-Y.Wu P.-J.Lu J.Loh T.-P. J. Am. Chem. Soc. 2008, 130: 16492 -
18c For a one-pot desymmetrizing
hydroformylation/carbonyl-ene cyclization process
for the synthesis of cyclohexanols, see:
Rueping M.Theissmann T.Kuenkel A.Koenigs RM. Angew. Chem. Int. Ed. 2008, 47: 6798 -
18d For the synthesis of pentalenes,
see:
Bigot A.Breuninger D.Breit B. Org. Lett. 2008, 10: 5321 -
18e For the total synthesis
of (+)-upial, see:
Anderl T.Emo M.Laschat S.Baro A.Frey W. Synthesis 2008, 1619 -
18f For the total synthesis
of (+)-azaspiracid-1, see:
Takahashi K.Watanabe M.Honda T. Angew. Chem. Int. Ed. 2008, 47: 131 -
18g
Evans DA.Kvaerno L.Dunn TB.Beauchemin A.Raymer B.Mulder JA.Olhava EJ.Juhl M.Kagechika K.Favor DA. J. Am. Chem. Soc. 2008, 130: 16295 - For platinum(II)-, palladium(II)-, or nickel(II)-catalyzed carbonyl-ene reactions employing the dynamic asymmetric catalysis strategy, see:
-
19a
Becker JJ.White PS.Gagne MR. J. Am. Chem. Soc. 2001, 123: 9478 -
19b
Mikami K.Aikawa K. Org. Lett. 2002, 4: 99 -
19c
Doherty S.Goodrich P.Hardacre C.Luo H.-K.Nieuwenhuyzen M.Rath RK. Organometallics 2005, 24: 5945 -
19d
Luo H.-K.Schumann H. J. Mol. Catal. A: Chem. 2006, 248: 42 -
20a
Becker JJ.Van Orden LJ.White PS.Gagne MR. Org. Lett. 2002, 4: 727 -
20b
Mikami K.Aikawa K.Kainuma S.Kawakami Y.Saito T.Sayo N.Kumobayashi H. Tetrahedron: Asymmetry 2004, 15: 3885 -
20c
Aikawa K.Kainuma S.Hatano M.Mikami K. Tetrahedron Lett. 2004, 45: 183 -
20d For the use of arylglyoxals,
see:
Doherty S.Knight JG.Smyth CH.Harrington RW.Clegg W. J. Org. Chem. 2006, 71: 9751 -
20e
Luo H.-K.Khim LB.Schumann H.Lim C.Jie TX.Yang H.-Y. Adv. Synth. Catal. 2007, 349: 1781 - 21 For the use of achiral acidic phenol
additives, see:
Koh JH.Larsen AO.Gagne MR. Org. Lett. 2001, 3: 1233 - 22 Lewis acid catalysts of metals of
the platinum group showed different carbonyl-ene reactivity.
See:
Doherty S.Knight JG.Smyth CH.Harrington RW.Clegg W. Organometallics 2007, 26: 5961 - 23 For a water-tolerant enantioselective
system, see:
Luo H.-K.Yang H.-Y.Jie TX.Chiew OS.Schumann H.Khim LB.Lim C. J. Mol. Catal. A: Chem. 2007, 261: 112 - 24 For the use of nickel(II), see:
Zheng K.Shi J.Liu XH.Feng XM. J. Am. Chem. Soc. 2008, 130: 15770 -
25a
Ogoshi S.Oka M.Kurosawa H. J. Am. Chem. Soc. 2004, 126: 11802 -
25b
Ogoshi S.Ueta M.Arai T.Kurosawa H. J. Am. Chem. Soc. 2005, 127: 12810 -
25c
Ogoshi S.Tonomori K.Oka M.Kurosawa H. J. Am. Chem. Soc. 2006, 128: 7077 - This selectivity has been observed in one thermal carbonyl-ene reaction, namely of 6-methylhepta-1,5-diene and the highly electron-deficient diethyl oxomalonate (180 ˚C, 24 h):
-
26a
Salomon MF.Pardo SN.Salomon RG. J. Am. Chem. Soc. 1980, 102: 2473 -
26b
Salomon MF.Pardo SN.Salomon RG. J. Am. Chem. Soc. 1984, 106: 3797 - 27 Procedure of the competition experiment:
The monosub-stituted alkene (2.5 mmol), methylenecyclohexane (2.5 mmol),
Et3N (3.0 mmol), p-anisaldehyde
(0.5 mmol), and TESOTf (0.875 mmol) were added to a soln of Ni(cod)2 (0.1 mmol)
and the ligand [Ph3P or (EtO)PPh2,
0.2 mmol] in toluene (2.5 mL) at 23 ˚C under argon.
The mixture was stirred for 48 h at r.t. The yields and ratios were
determined by ¹H NMR analysis of the crude reaction
mixture. Ph3P was the ligand in the reaction between
allylbenzene and methylenecyclohexane. (EtO)PPh2 was
the ligand in the reaction between oct-1-ene and methylenecyclohexane
- For titanium-catalyzed intramolecular reductive cyclization of terminal alkenes and aldehydes or ketones, see:
-
28a
Kablaoui NM.Buchwald SL. J. Am. Chem. Soc. 1995, 117: 6785 -
28b
Crowe WE.Rachita MJ. J. Am. Chem. Soc. 1995, 117: 6787 - For examples of intermolecular coupling of alkenes and aldehydes with stoichiometric transition metals, see the following. With titanium:
-
29a
Mizojiri R.Urabe H.Sato F. J. Org. Chem. 2000, 65: 6217 -
29b With zirconium:
Epstein OL.Seo JM.Masalov N.Cha JK. Org. Lett. 2005, 7: 2105 -
29c For a catalytic system
using a silver-catalyzed silylene transfer strategy, see:
Takahashi T.Suzuki N.Hasegawa M.Nitto Y.Aoyagi K.Saburi M. Chem. Lett. 1992, 331 -
29d
Cirakovic J.Driver TG.Woerpel KA. J. Am. Chem. Soc. 2002, 124: 9370 -
29e
Cirakovic J.Driver TG.Woerpel KA. J. Org. Chem. 2004, 69: 4007 - For examples on other oxametallacycles, see the following. With titanium:
-
30a
Cohen SA.Bercaw JE. Organometallics 1985, 4: 1006 -
30b With zirconium:
Thorn MG.Hill JE.Waratuke SA.Johnson ES.Fanwick PE.Rothwell IP. J. Am. Chem. Soc. 1997, 119: 8630 -
30c With rhodium:
Suzuki N.Rousset CJ.Aoyagi K.Kotora M.Takahashi T.Hasegawa M.Nitto Y.Saburi M. J. Organomet. Chem. 1994, 473: 117 -
30d
Godard C.Duckett SB.Parsons S.Perutz RN. Chem. Commun. 2003, 2332 - For a review on the nickel-catalyzed reductive coupling reactions, see:
-
31a For a general reference
on organonickel chemistry, see:
Montgomery J. Angew. Chem. Int. Ed. 2004, 43: 3890 -
31b On regioselectivity
and enantioselectivity in nickel-catalyzed reductive coupling reactions
of alkynes, see:
Modern Organonickel
Chemistry
Tamaru Y. Wiley-VCH; Weinheim: 2005. -
31c
Moslin RM.Moslin KM.Jamison TF. Chem. Commun. 2007, 4441 - For nickel(0)-induced carbon-carbon linkage between alkenes and carbon dioxide, see:
-
32a
Hoberg H.Schaefer D. J. Organomet. Chem. 1982, 236: C28 -
32b
Hoberg H.Schaefer D. J. Organomet. Chem. 1983, 251: C51 -
32c
Hoberg H.Peres Y.Milchereit A. J. Organomet. Chem. 1986, 307: C38 -
32d
Hoberg H.Peres Y.Milchereit A. J. Organomet. Chem. 1986, 307: C41 -
32e
Hoberg H.Peres Y.Krueger C.Tsay YH. Angew. Chem. 1987, 99: 799 -
32f For catalytic reductive carboxylation
of styrene, see:
Hoberg H.Heger G.Krueger C.Tsay YH. J. Organomet. Chem. 1988, 348: 261 -
32g
Williams CM.Johnson JB.Rovis T. J. Am. Chem. Soc. 2008, 130: 14936 - For the use of isocyanates with α-olefins, see:
-
33a
Hoberg H.Sümmermann K.Milchereit A. Angew. Chem. 1985, 97: 321 -
33b
Hoberg H.Sümmermann K.Milchereit A.
J. Organomet. Chem. 1985, 288: 237 -
33c
Hoberg H.Hernandez E. J. Chem. Soc., Chem. Commun. 1986, 544 -
33d
Hoberg H.Hernandez E. J. Organomet. Chem. 1986, 311: 307 -
33e
Hernandez E.Hoberg H. J. Organomet. Chem. 1987, 328: 403 -
33f
Hoberg H.Sümmermann K.Hernandez E.Ruppin C.Guhl D. J. Organomet. Chem. 1988, 344: C35 -
33g
Hoberg H. J. Organomet. Chem. 1988, 358: 507 -
33h
Hoberg H.Guhl D. J. Organomet. Chem. 1990, 384: C43 - For the use of isocyanates with activated alkenes, see:
-
34a
Hernandez E.Hoberg H. J. Organomet. Chem. 1986, 315: 245 -
34b
Hoberg H.Hernandez E.Guhl D. J. Organomet. Chem. 1988, 339: 213 -
34c
Hoberg H.Guhl D. J. Organomet. Chem. 1989, 375: 245 -
34d
Hoberg H.Nohlen M. J. Organomet. Chem. 1990, 382: C6 -
34e
Hoberg H.Guhl D.Betz P. J. Organomet. Chem. 1990, 387: 233 -
34f
Hoberg H.Nohlen M. J. Organomet. Chem. 1991, 412: 225 - For steric (cone angles) and electronic properties (νCO values) of organophosphines, see:
-
35a
Rahman MM.Liu H.-Y.Eriks K.Prock A.Giering WP. Organometallics 1989, 8: 1 -
35b
Tolman CA. Chem. Rev. 1977, 77: 313 -
35c
Otto S. J. Chem. Crystallogr. 2001, 31: 185 -
35d
Riihimaki H.Kangas T.Suomalainen P.Reinius HK.Jaaskelainen S.Haukka M.Krause AOI.Pakkanen TA.Pursiainen JT. J. Mol. Catal. A: Chem. 2003, 200: 81 -
35e
Steinmetz WE. Quant. Struct.-Act. Relat. 1996, 15: 1 ; The frequency for (o-anisyl)3P was estimated from (p-anisyl)3P assuming they have similarly electron-donating properties. Ph3P, (p-MeC6H4)3P, (p-FC6H4)3P and (p-F3CC6H4)3P have the same cone angle (145˚) according to ref. 35a - For recent reviews of NHC ligands in transition-metal catalysis, see:
-
36a
Weskamp T.Bohm VPW.Herrmann WA. J. Organomet. Chem. 2000, 600: 12 -
36b
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 -
36c
Crudden CM.Allen DP. Coord. Chem. Rev. 2004, 248: 2247 -
36d
Viciu MS.Nolan SP. Top. Organomet. Chem. 2005, 14: 241 -
36e
Crabtree RH. J. Organomet. Chem. 2005, 690: 5451 - For a recent review on the nickel-catalyzed hydrovinylation, see:
-
37a On the dimerization of
ethylene and propylene, see:
RajanBabu TV. Chem. Rev. 2003, 103: 2845 -
37b On the nickel-catalyzed
asymmetric hydrovinylation of vinylarenes (coupling with ethylene),
see:
Pillai SM.Ravindranathan M.Sivaram S. Chem. Rev. 1986, 86: 353 -
37c
Nomura N.Jin J.Park H.RajanBabu TV. J. Am. Chem. Soc. 1998, 120: 459 - For examples of the isomerization of olefins by transition-metal hydrides, see the following. With nickel:
-
38a With ruthenium:
Tolman CA. J. Am. Chem. Soc. 1972, 94: 2994 -
38b With rhodium:
Wakamatsu H.Nishida M.Adachi N.Mori M. J. Org. Chem. 2000, 65: 3966 -
38c
Morrill TC.D’Souza CA. Organometallics 2003, 22: 1626 - For a theoretical comparison of palladium- and nickel-catalyzed Heck reactions, see:
-
39a For the detection of a palladium
hydride species in the Heck reaction, see:
Lin B.-L.Liu L.Fu Y.Luo S.-W.Chen Q.Guo Q.-X. Organometallics 2004, 23: 2114 -
39b
Hills ID.Fu GC.
J. Am. Chem. Soc. 2004, 126: 13178 - For [M(NHC)H] complexes of unusually high stability, see:
-
40a
Clement ND.Cavell KJ.Jones C.Elsevier CJ. Angew. Chem. Int. Ed. 2004, 43: 1277 -
40b
Viciano M.Mas-Marzá E.Poyatos M.Sanaú M.Crabtree RH.Peris E. Angew. Chem. Int. Ed. 2005, 44: 444 - 41 For the use of an electron-deficient
alkene to facilitate the reductive elimination of R-R from [R2Ni(bipy)] species, see:
Yamamoto T.Yamamoto A.Ikeda S. J. Am. Chem. Soc. 1971, 93: 3350 - For the use of electron-deficient styrenes as additives in catalysis, see:
-
42a
Giovannini R.Studemann T.Dussin G.Knochel P. Angew. Chem. Int. Ed. 1998, 37: 2387 -
42b
Giovannini R.Studemann T.Devasagayaraj A.Dussin G.Knochel P. J. Org. Chem. 1999, 64: 3544 -
42c For the use of methyl
acrylate, see:
Bercot EA.Rovis T. J. Am. Chem. Soc. 2002, 124: 174 -
42d For the use of fumaronitrile,
see:
Lau J.Sustmann R. Tetrahedron Lett. 1985, 26: 4907 -
42e For the use of dimethyl
fumarate, see:
Sustmann R.Lau J.Zipp M. Tetrahedron Lett. 1986, 27: 5207 -
42f
van Asselt R.Elsevier CJ. Tetrahedron 1994, 50: 323 - It was shown that certain organophosphorus compounds accelerate reductive elimination from a nickel complex (albeit not in a catalytic reaction). The authors attributed the effect to the size of the phosphorus additive rather than its electronic nature:
-
43a For the use of Ph3P
as an additive to stabilize an [Ni(NHC)] catalyst,
see:
Komiya S.Abe Y.Yamamoto A.Yamamoto T. Organometallics 1983, 2: 1466 -
43b
Sawaki R.Sato Y.Mori M. Org. Lett. 2004, 6: 1131 - The effects of phosphorus ligands upon reductive elimination from [Ni(NHC)alkyl] complexes to give alkyl imidazolium salts have been studied. In contrast, our observation that the NHC was not consumed suggests that one of the other ligands (for example H or OTf) significantly affects the properties and behavior of the metal complex:
-
44a
McGuinness DS.Saendig N.Yates BF.Cavell KJ. J. Am. Chem. Soc. 2001, 123: 4029 -
44b
Clement ND.Cavell KJ. Angew. Chem. Int. Ed. 2004, 43: 3845 -
45a
Liang L.Feng X.Liu J.Rieke PC.Fryxell GE. Macromolecules 1998, 31: 7845 -
45b
Pelton R. Adv. Colloid Interface Sci. 2000, 85: 1 -
45c
Maeda Y.Nakamura T.Ikeda I. Macromolecules 2001, 34: 1391 - 46 Beak has also reported regioselective β′-lithiation
and alkylation of α,β-unsaturated amides:
Beak P.Kempf DJ.Wilson KD. J. Am. Chem. Soc. 1985, 107: 4745 - For examples of reactions between olefins and phenyl isocyanate with tin(IV) chloride, see:
-
47a
Baker JW.Holdsworth JB. J. Chem. Soc. 1945, 724 -
47b For examples of the addition
of iodine or chlorosulfonyl isocyanates to unsymmetrical olefins,
see:
Baker JW. An. Real Soc. Esp. Fis. Quim., B 1949, 45: 381 -
47c
Drefahl G.Ponsold K. Chem. Ber. 1960, 93: 519 -
47d
Moriconi EJ.Kelly JF. J. Org. Chem. 1968, 33: 3036 -
47e
Hassner A.Hoblitt RP.Heathcock C.Kropp JE.Lorber M. J. Am. Chem. Soc. 1970, 92: 1326 - 48 On deprotection, see:
Lacey RN. J. Chem. Soc. 1960, 1633 -
49a
Duong HA.Cross MJ.Louie J. J. Am. Chem. Soc. 2004, 126: 11438 -
49b
Duong HA.Louie J. Tetrahedron 2006, 62: 7552 -
50a
Duong HA.Tekavec TN.Arif AM.Louie J. Chem. Commun. 2004, 112 -
50b
Duong HA.Cross MJ.Louie J. Org. Lett. 2004, 6: 4679 -
51a
Posner GH. An Introduction to Synthesis Using Organocopper Reagents Wiley-Interscience; New York: 1980. -
51b On catalyzed conjugate
addition, see:
Perlmutter P. Conjugate Addition Reactions in Organic Synthesis Pergamon; Oxford: 1992. -
51c
Lopez F.Minnaard AJ.Feringa BL. Acc. Chem. Res. 2007, 40: 179 -
51d
Christoffers J.Koripelly G.Rosiak A.Rossle M. Synthesis 2007, 1279 -
51e
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 - For pioneering work in chlorotrimethylsilane-modified dialkylcuprate conjugate addition reactions, see:
-
52a
Corey EJ.Hannon FJ.Boaz NW. Tetrahedron 1989, 45: 545 -
52b
Horiguchi Y.Komatsu M.Kuwajima I. Tetrahedron Lett. 1989, 30: 7087 - For thermal reactions, see:
-
53a For Lewis acid promoted reactions,
see:
Albisetti CJ.Fisher NG.Hogsed MJ.Joyce RM. J. Am. Chem. Soc. 1956, 78: 2637 -
53b
Büchi G.Koller E.Perry CW. J. Am. Chem. Soc. 1964, 86: 5646 -
53c
Snider BB.Deutsch EA. J. Org. Chem. 1983, 48: 1822 - 54 For enal- and enone-derived coupling
reactions of allylnickel complexes (stoichiometric in nickel sunlamp irradiation),
see:
Johnson JR.Tully PS.Mackenzie PB.Sabat M. J. Am. Chem. Soc. 1991, 113: 6172 - 55 On using allylboron reagents and
enones, see:
Sieber JD.Liu S.Morken JP. J. Am. Chem. Soc. 2007, 129: 2214 - 56 For nickel-catalyzed intermolecular
coupling of enones and alkynes, see:
Herath A.Thompson BB.Montgomery J. J. Am. Chem. Soc. 2007, 129: 8712 - For the preparation of geometrically defined enolsilanes from aldehydes and ketones, see:
-
57a
House HO.Czuba LJ.Gall M.Olmstead HD. J. Org. Chem. 1969, 34: 2324 -
57b
Heathcock CH.Buse CT.Kleschick WA.Pirrung MC.Sohn JE.Lampe J. J. Org. Chem. 1980, 45: 1066 -
57c
Corey EJ.Gross AW. Tetrahedron Lett. 1984, 25: 495 -
57d
Hall PL.Gilchrist JH.Collum DB. J. Am. Chem. Soc. 1991, 113: 9571 -
57e
Denmark SE.Pham SM. J. Org. Chem. 2003, 68: 5045 - For general reviews on enolsilane reactions, see:
-
58a
Brownbridge P. Synthesis 1983, 85 -
58b
Kuwajima I.Nakamura E. Acc. Chem. Res. 1985, 18: 181 -
58c
Berrisford DJ. Angew. Chem., Int. Ed. Engl. 1995, 34: 178 - On protonation, see:
-
59a On α-chlorination,
see:
Ishihara K.Nakashima D.Hiraiwa Y.Yamamoto H. J. Am. Chem. Soc. 2003, 125: 24 -
59b On fluorination, see:
Zhang Y.Shibatomi K.Yamamoto H. J. Am. Chem. Soc. 2004, 126: 15038 -
59c On epoxidation, see:
Cahard D.Audouard C.Plaquevent JC.Roques N. Org. Lett. 2000, 2: 3699 -
59d
Davis FA.Sheppard AC.Chen BC.Haque MS. J. Am. Chem. Soc. 1990, 112: 6679 -
59e On dihydroxylation, see:
Ishii A.Kojima J.Mikami K. Org. Lett. 1999, 1: 2013 -
59f On aldol reactions, see:
Morikawa K.Park J.Andersson PG.Hashiyama T.Sharpless KB. J. Am. Chem. Soc. 1993, 115: 8463 -
59g
Evans DA.Masse CE.Wu J. Org. Lett. 2002, 4: 3375 -
59h
Evans DA.Wu J.Masse CE.MacMillan DWC. Org. Lett. 2002, 4: 3379 - 60
Murakami M.Ashida S. Chem. Commun. 2006, 4599
References
For intramolecular examples of a carbonyl-ene reaction between monosubstituted alkenes and sterically demanding aldehydes, see refs. 10a and 10b.