Synlett 2009(16): 2565-2582  
DOI: 10.1055/s-0029-1217747
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Catalytic Addition of Simple Alkenes to Carbonyl Compounds by Use of Group 10 Metals

Chun-Yu Ho*a, Kristin D. Schleicherb, Chun-Wa Chana, Timothy F. Jamison*b
a Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. of China
Fax: +852 26035057; e-Mail: jasonhcy@cuhk.edu.hk;
b Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Fax: +1(617)3240253; e-Mail: tfj@mit.edu;
Further Information

Publication History

Received 25 March 2009
Publication Date:
04 September 2009 (online)

Abstract

Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon-carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, and conjugated aldehydes and ketones, are discussed. In these reactions, the olefins function as vinyl- and allylmetal equivalents, providing a new strategy for organic synthesis. Current limitations and the outlook for this new strategy are also discussed.

1 Introduction

2 Carbonyl-Ene-Type Reactions

2.1 Reactions Catalyzed by Group 10 Cationic Complexes as Lewis Acids

2.2 Reactions Catalyzed by Low-Valent Nickel(0) Complexes

3 Unactivated Monosubstituted Alkenes as Vinylmetal Equivalents

3.1 Intramolecular Reactions with Aldehydes and Ketones

3.2 Intermolecular Reactions with Aldehydes

3.3 Synthesis of Acrylamides with Isocyanates

3.4 Conjugate Addition to α,β-Unsaturated Aldehydes and ­Ketones

4 Intramolecular Insertion of Alkenes into Cyclobutanones

5 Limitations and Outlook

    References

  • 1 Alpha Olefins Applications Handbook   Lappin GR. Sauer JD. M. Dekker; New York: 1989. 
  • 2a Organometallic Catalysts and Olefin Polymerization   Blom R. Springer; New York: 2001. 
  • 2b

    Special Issue ‘Frontiers in Metal-Catalyzed Polymerization’ (Gladysz,
    J. A., Guest Ed.): ; Chem. Rev.; 2000, 100: 1167-1682

  • 3 Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis   John Wiley & Sons; New York: 1995. 
  • 4a For a recent review on epoxidation, see: Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; Weinheim: 2000. 
  • 4b Shi Y. Acc. Chem. Res.  2004,  37:  488 
  • 4c Yang D. Acc. Chem. Res.  2004,  37:  497 
  • 4d For reviews on dihydroxylation, see: Xia Q.-H. Ge H.-Q. Ye C.-P. Liu Z.-M. Su K.-X. Chem. Rev.  2005,  105:  1603 
  • 4e Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 4f Bolm C. Hildebrand JP. Muniz K. Recent Advances in Asymmetric Dihydroxylation and Aminohydroxylation in Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; Weinheim: 2000.  p.399 
  • 4g Sundermeier U. Döbler C. Beller M. In Modern Oxidation Methods   Bäckvall J.-E. Wiley-VCH; Weinheim: 2004.  p.1-20  
  • 4h Kobayashi S. Sugiura M. Adv. Synth. Catal.  2006,  348:  1496 
  • 5a For reviews, see: Handbook of Metathesis   Grubbs RH. John Wiley & Sons; New York: 2003. 
  • 5b Grubbs RH. Tetrahedron  2004,  60:  7117 
  • 5c Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4490 
  • For reviews on the Heck reaction and related palladium hydride chemistry, see:
  • 6a Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 6b Negishi E.-i. Handbook of Organopalladium Chemistry for Organic Synthesis   Wiley-Interscience; New York: 2002. 
  • The carbonyl-ene reaction was first reported by Alder in 1943:
  • 7a Alder K. Pascher F. Schmitz A. Ber. Dtsch. Chem. Ges.  1943,  76:  27 
  • 7b For reviews on the carbonyl-ene and Prins reactions, see: Snider BB. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.527 
  • 7c Hoffmann HMR. Angew. Chem., Int. Ed. Engl.  1969,  8:  556 
  • 7d Adams DR. Bhatnagar SP. Synthesis  1977,  661 
  • 7e Oppolzer W. Snieckus V. Angew. Chem., Int. Ed. Engl.  1978,  17:  476 
  • 7f Snider BB. Acc. Chem. Res.  1980,  13:  426 
  • 7g Mikami K. Shimizu M. Chem. Rev.  1992,  92:  1021 
  • 7h Berrisford DJ. Bolm C. Angew. Chem. Int. Ed.  1995,  34:  1717 
  • 7i Dias LC. Curr. Org. Chem.  2000,  4:  305 
  • 7j Overman LE. Pennington LD. J. Org. Chem.  2003,  68:  7143 
  • 7k Pastor IM. Yus M. Curr. Org. Chem.  2007,  11:  925 
  • 7l Clarke ML. France MB. Tetrahedron  2008,  64:  9003 
  • 7m Ding K. Chem. Commun.  2008,  909 
  • 8a Snider BB. Rodini DJ. Tetrahedron Lett.  1980,  21:  1815 
  • 8b Snider BB. Rodini DJ. Kirk TC. Cordova R. J. Am. Chem. Soc.  1982,  104:  555 
  • 8c Majewski M. Bantle GW. Synth. Commun.  1990,  20:  2549 
  • 8d Houston TA. Tanaka Y. Koreeda M. J. Org. Chem.  1993,  58:  4287 
  • 8e Aggarwal VK. Vennall GP. Davey PN. Newman C. Tetrahedron Lett.  1998,  39:  1997 
  • 8f Ellis WW. Odenkirk W. Bosnich B. Chem. Commun.  1998,  1311 
  • 8g Loh T.-P. Feng L.-C. Yang J.-Y. Synthesis  2002,  937 
  • 9 One isolated example of a carbonyl-ene reaction of an aromatic aldehyde and a monosubstituted alkene has been described (yield not reported): Epifani E. Florio S. Ingrosso G. Tetrahedron  1988,  44:  5869 
  • For intramolecular examples using sterically demanding aldehydes, see:
  • 10a Andersen NH. Hadley SW. Kelly JD. Bacon ER. J. Org. Chem.  1985,  50:  4144 
  • 10b Fujita M. Shindo M. Shishido K. Tetrahedron Lett.  2005,  46:  1269 
  • 11 For pioneering examples employing α-olefins with aliphatic aldehydes, see: Snider BB. Phillips GB. J. Org. Chem.  1983,  48:  464 
  • 13a Ng S.-S. Jamison TF. J. Am. Chem. Soc.  2005,  127:  14194 
  • 13b Ho C.-Y. Ng S.-S. Jamison TF. J. Am. Chem. Soc.  2006,  128:  5362 
  • 13c Ng S.-S. Ho C.-Y. Jamison TF. J. Am. Chem. Soc.  2006,  128:  11513 
  • 13d For the use of isocyanates as electrophiles, see: Ho C.-Y. Jamison TF. Angew. Chem. Int. Ed.  2007,  46:  782 
  • 13e Schleicher KD. Jamison TF. Org. Lett.  2007,  9:  875 
  • 13f For the use of enal and enol as electrophiles, see: Ng S.-S. Ho C.-Y. Schleicher KD. Jamison TF. Pure Appl. Chem.  2008,  80:  929 
  • 13g Ho C.-Y. Ohmiya H. Jamison TF. Angew. Chem. Int. Ed.  2008,  47:  1893 
  • 14 Achmatowicz O. Szechner B. J. Org. Chem.  1972,  37:  964 
  • 15a Whitesell JK. Bhattacharya A. Aguilar DA. Henke K. J. Chem. Soc., Chem. Commun.  1982,  989 
  • 15b Whitesell JK. Lawrence RM. Chen HH. J. Org. Chem.  1986,  51:  4779 
  • 15c Whitesell JK. Bhattacharya A. Buchanan CM. Chen HH. Deyo D. James D. Liu C.-L. Minton MA. Tetrahedron  1986,  42:  2993 
  • For the use of a chiral aluminum-BINOL complex, see:
  • 16a For representative examples on enantioselective catalysis of carbonyl-ene reactions by titanium complexes, see: Maruoka K. Hoshino Y. Shirasaka T. Yamamoto H. Tetrahedron Lett.  1988,  29:  3967 
  • 16b Mikami K. Terada M. Nakai T. J. Am. Chem. Soc.  1989,  111:  1940 
  • 16c Mikami K. Sawa E. Terada M. Tetrahedron: Asymmetry  1991,  2:  1403 
  • 16d For the use of a chiral bis(oxazoline)copper(II) complex, see: Mikami K. Koizumi Y. Osawa A. Terada M. Takayama H. Nakagawa K. Okano T. Synlett  1999,  1899 
  • 16e Evans DA. Burgey CS. Paras NA. Vojkovsky T. Tregay SW. J. Am. Chem. Soc.  1998,  120:  5824 
  • For pioneering work on intermolecular reactions employing chiral palladium(II) complexes, see:
  • 17a For highly enantioselective ene-type cyclizations catalyzed by chiral palladium complexes bearing BINAP derivatives, see: Hao J. Hatano M. Mikami K. Org. Lett.  2000,  2:  4059 
  • 17b Hatano M. Terada M. Mikami K. Angew. Chem. Int. Ed.  2001,  40:  249 
  • Other representative examples reported in 2008 employing metal catalyst centers other than group 10 or Brønsted acids. For enantioselective catalytic carbonyl-ene cyclization reactions by a chromium(III) complex, see:
  • 18a For such reactions catalyzed by an indium(III)-PyBox complex, see: Grachan ML. Tuidge MT. Jacobsen EN. Angew. Chem. Int. Ed.  2008,  47:  1469 
  • 18b For organocatalytic chiral Brønsted acids, see: Zhao J.-F. Tsui H.-Y. Wu P.-J. Lu J. Loh T.-P. J. Am. Chem. Soc.  2008,  130:  16492 
  • 18c For a one-pot desymmetrizing hydroformylation/carbonyl-ene cyclization process for the synthesis of cyclohexanols, see: Rueping M. Theissmann T. Kuenkel A. Koenigs RM. Angew. Chem. Int. Ed.  2008,  47:  6798 
  • 18d For the synthesis of pentalenes, see: Bigot A. Breuninger D. Breit B. Org. Lett.  2008,  10:  5321 
  • 18e For the total synthesis of (+)-upial, see: Anderl T. Emo M. Laschat S. Baro A. Frey W. Synthesis  2008,  1619 
  • 18f For the total synthesis of (+)-azaspiracid-1, see: Takahashi K. Watanabe M. Honda T. Angew. Chem. Int. Ed.  2008,  47:  131 
  • 18g Evans DA. Kvaerno L. Dunn TB. Beauchemin A. Raymer B. Mulder JA. Olhava EJ. Juhl M. Kagechika K. Favor DA. J. Am. Chem. Soc.  2008,  130:  16295 
  • For platinum(II)-, palladium(II)-, or nickel(II)-catalyzed carbonyl-ene reactions employing the dynamic asymmetric catalysis strategy, see:
  • 19a Becker JJ. White PS. Gagne MR. J. Am. Chem. Soc.  2001,  123:  9478 
  • 19b Mikami K. Aikawa K. Org. Lett.  2002,  4:  99 
  • 19c Doherty S. Goodrich P. Hardacre C. Luo H.-K. Nieuwenhuyzen M. Rath RK. Organometallics  2005,  24:  5945 
  • 19d Luo H.-K. Schumann H. J. Mol. Catal. A: Chem.  2006,  248:  42 
  • 20a Becker JJ. Van Orden LJ. White PS. Gagne MR. Org. Lett.  2002,  4:  727 
  • 20b Mikami K. Aikawa K. Kainuma S. Kawakami Y. Saito T. Sayo N. Kumobayashi H. Tetrahedron: Asymmetry  2004,  15:  3885 
  • 20c Aikawa K. Kainuma S. Hatano M. Mikami K. Tetrahedron Lett.  2004,  45:  183 
  • 20d For the use of arylglyoxals, see: Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. J. Org. Chem.  2006,  71:  9751 
  • 20e Luo H.-K. Khim LB. Schumann H. Lim C. Jie TX. Yang H.-Y. Adv. Synth. Catal.  2007,  349:  1781 
  • 21 For the use of achiral acidic phenol additives, see: Koh JH. Larsen AO. Gagne MR. Org. Lett.  2001,  3:  1233 
  • 22 Lewis acid catalysts of metals of the platinum group showed different carbonyl-ene reactivity. See: Doherty S. Knight JG. Smyth CH. Harrington RW. Clegg W. Organometallics  2007,  26:  5961 
  • 23 For a water-tolerant enantioselective system, see: Luo H.-K. Yang H.-Y. Jie TX. Chiew OS. Schumann H. Khim LB. Lim C. J. Mol. Catal. A: Chem.  2007,  261:  112 
  • 24 For the use of nickel(II), see: Zheng K. Shi J. Liu XH. Feng XM. J. Am. Chem. Soc.  2008,  130:  15770 
  • 25a Ogoshi S. Oka M. Kurosawa H. J. Am. Chem. Soc.  2004,  126:  11802 
  • 25b Ogoshi S. Ueta M. Arai T. Kurosawa H. J. Am. Chem. Soc.  2005,  127:  12810 
  • 25c Ogoshi S. Tonomori K. Oka M. Kurosawa H. J. Am. Chem. Soc.  2006,  128:  7077 
  • This selectivity has been observed in one thermal carbonyl-ene reaction, namely of 6-methylhepta-1,5-diene and the highly electron-deficient diethyl oxomalonate (180 ˚C, 24 h):
  • 26a Salomon MF. Pardo SN. Salomon RG. J. Am. Chem. Soc.  1980,  102:  2473 
  • 26b Salomon MF. Pardo SN. Salomon RG. J. Am. Chem. Soc.  1984,  106:  3797 
  • 27 Procedure of the competition experiment: The monosub-stituted alkene (2.5 mmol), methylenecyclohexane (2.5 mmol), Et3N (3.0 mmol), p-anisaldehyde (0.5 mmol), and TESOTf (0.875 mmol) were added to a soln of Ni(cod)2 (0.1 mmol) and the ligand [Ph3P or (EtO)PPh2, 0.2 mmol] in toluene (2.5 mL) at 23 ˚C under argon. The mixture was stirred for 48 h at r.t. The yields and ratios were determined by ¹H NMR analysis of the crude reaction mixture. Ph3P was the ligand in the reaction between allylbenzene and methylenecyclohexane. (EtO)PPh2 was the ligand in the reaction between oct-1-ene and methylenecyclohexane
  • For titanium-catalyzed intramolecular reductive cyclization of terminal alkenes and aldehydes or ketones, see:
  • 28a Kablaoui NM. Buchwald SL. J. Am. Chem. Soc.  1995,  117:  6785 
  • 28b Crowe WE. Rachita MJ. J. Am. Chem. Soc.  1995,  117:  6787 
  • For examples of intermolecular coupling of alkenes and aldehydes with stoichiometric transition metals, see the following. With titanium:
  • 29a Mizojiri R. Urabe H. Sato F. J. Org. Chem.  2000,  65:  6217 
  • 29b With zirconium: Epstein OL. Seo JM. Masalov N. Cha JK. Org. Lett.  2005,  7:  2105 
  • 29c For a catalytic system using a silver-catalyzed silylene transfer strategy, see: Takahashi T. Suzuki N. Hasegawa M. Nitto Y. Aoyagi K. Saburi M. Chem. Lett.  1992,  331 
  • 29d Cirakovic J. Driver TG. Woerpel KA. J. Am. Chem. Soc.  2002,  124:  9370 
  • 29e Cirakovic J. Driver TG. Woerpel KA. J. Org. Chem.  2004,  69:  4007 
  • For examples on other oxametallacycles, see the following. With titanium:
  • 30a Cohen SA. Bercaw JE. Organometallics  1985,  4:  1006 
  • 30b With zirconium: Thorn MG. Hill JE. Waratuke SA. Johnson ES. Fanwick PE. Rothwell IP. J. Am. Chem. Soc.  1997,  119:  8630 
  • 30c With rhodium: Suzuki N. Rousset CJ. Aoyagi K. Kotora M. Takahashi T. Hasegawa M. Nitto Y. Saburi M. J. Organomet. Chem.  1994,  473:  117 
  • 30d Godard C. Duckett SB. Parsons S. Perutz RN. Chem. Commun.  2003,  2332 
  • For a review on the nickel-catalyzed reductive coupling reactions, see:
  • 31a For a general reference on organonickel chemistry, see: Montgomery J. Angew. Chem. Int. Ed.  2004,  43:  3890 
  • 31b On regioselectivity and enantioselectivity in nickel-catalyzed reductive coupling reactions of alkynes, see: Modern Organonickel Chemistry   Tamaru Y. Wiley-VCH; Weinheim: 2005. 
  • 31c Moslin RM. Moslin KM. Jamison TF. Chem. Commun.  2007,  4441 
  • For nickel(0)-induced carbon-carbon linkage between alkenes and carbon dioxide, see:
  • 32a Hoberg H. Schaefer D. J. Organomet. Chem.  1982,  236:  C28 
  • 32b Hoberg H. Schaefer D. J. Organomet. Chem.  1983,  251:  C51 
  • 32c Hoberg H. Peres Y. Milchereit A. J. Organomet. Chem.  1986,  307:  C38 
  • 32d Hoberg H. Peres Y. Milchereit A. J. Organomet. Chem.  1986,  307:  C41 
  • 32e Hoberg H. Peres Y. Krueger C. Tsay YH. Angew. Chem.  1987,  99:  799 
  • 32f For catalytic reductive carboxylation of styrene, see: Hoberg H. Heger G. Krueger C. Tsay YH. J. Organomet. Chem.  1988,  348:  261 
  • 32g Williams CM. Johnson JB. Rovis T. J. Am. Chem. Soc.  2008,  130:  14936 
  • For the use of isocyanates with α-olefins, see:
  • 33a Hoberg H. Sümmermann K. Milchereit A. Angew. Chem.  1985,  97:  321 
  • 33b Hoberg H. Sümmermann K. Milchereit A.
    J. Organomet. Chem.  1985,  288:  237 
  • 33c Hoberg H. Hernandez E. J. Chem. Soc., Chem. Commun.  1986,  544 
  • 33d Hoberg H. Hernandez E. J. Organomet. Chem.  1986,  311:  307 
  • 33e Hernandez E. Hoberg H. J. Organomet. Chem.  1987,  328:  403 
  • 33f Hoberg H. Sümmermann K. Hernandez E. Ruppin C. Guhl D. J. Organomet. Chem.  1988,  344:  C35 
  • 33g Hoberg H. J. Organomet. Chem.  1988,  358:  507 
  • 33h Hoberg H. Guhl D. J. Organomet. Chem.  1990,  384:  C43 
  • For the use of isocyanates with activated alkenes, see:
  • 34a Hernandez E. Hoberg H. J. Organomet. Chem.  1986,  315:  245 
  • 34b Hoberg H. Hernandez E. Guhl D. J. Organomet. Chem.  1988,  339:  213 
  • 34c Hoberg H. Guhl D. J. Organomet. Chem.  1989,  375:  245 
  • 34d Hoberg H. Nohlen M. J. Organomet. Chem.  1990,  382:  C6 
  • 34e Hoberg H. Guhl D. Betz P. J. Organomet. Chem.  1990,  387:  233 
  • 34f Hoberg H. Nohlen M. J. Organomet. Chem.  1991,  412:  225 
  • For steric (cone angles) and electronic properties (νCO values) of organophosphines, see:
  • 35a Rahman MM. Liu H.-Y. Eriks K. Prock A. Giering WP. Organometallics  1989,  8:  1 
  • 35b Tolman CA. Chem. Rev.  1977,  77:  313 
  • 35c Otto S. J. Chem. Crystallogr.  2001,  31:  185 
  • 35d Riihimaki H. Kangas T. Suomalainen P. Reinius HK. Jaaskelainen S. Haukka M. Krause AOI. Pakkanen TA. Pursiainen JT. J. Mol. Catal. A: Chem.  2003,  200:  81 
  • 35e Steinmetz WE. Quant. Struct.-Act. Relat.  1996,  15:  1 ; The frequency for (o-anisyl)3P was estimated from (p-anisyl)3P assuming they have similarly electron-donating properties. Ph3P, (p-MeC6H4)3P, (p-FC6H4)3P and (p-F3CC6H4)3P have the same cone angle (145˚) according to ref. 35a
  • For recent reviews of NHC ligands in transition-metal catalysis, see:
  • 36a Weskamp T. Bohm VPW. Herrmann WA. J. Organomet. Chem.  2000,  600:  12 
  • 36b Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 36c Crudden CM. Allen DP. Coord. Chem. Rev.  2004,  248:  2247 
  • 36d Viciu MS. Nolan SP. Top. Organomet. Chem.  2005,  14:  241 
  • 36e Crabtree RH. J. Organomet. Chem.  2005,  690:  5451 
  • For a recent review on the nickel-catalyzed hydrovinylation, see:
  • 37a On the dimerization of ethylene and propylene, see: RajanBabu TV. Chem. Rev.  2003,  103:  2845 
  • 37b On the nickel-catalyzed asymmetric hydrovinylation of vinylarenes (coupling with ethylene), see: Pillai SM. Ravindranathan M. Sivaram S. Chem. Rev.  1986,  86:  353 
  • 37c Nomura N. Jin J. Park H. RajanBabu TV. J. Am. Chem. Soc.  1998,  120:  459 
  • For examples of the isomerization of olefins by transition-metal hydrides, see the following. With nickel:
  • 38a With ruthenium: Tolman CA. J. Am. Chem. Soc.  1972,  94:  2994 
  • 38b With rhodium: Wakamatsu H. Nishida M. Adachi N. Mori M. J. Org. Chem.  2000,  65:  3966 
  • 38c Morrill TC. D’Souza CA. Organometallics  2003,  22:  1626 
  • For a theoretical comparison of palladium- and nickel-catalyzed Heck reactions, see:
  • 39a For the detection of a palladium hydride species in the Heck reaction, see: Lin B.-L. Liu L. Fu Y. Luo S.-W. Chen Q. Guo Q.-X. Organometallics  2004,  23:  2114 
  • 39b Hills ID. Fu GC.
    J. Am. Chem. Soc.  2004,  126:  13178 
  • For [M(NHC)H] complexes of unusually high stability, see:
  • 40a Clement ND. Cavell KJ. Jones C. Elsevier CJ. Angew. Chem. Int. Ed.  2004,  43:  1277 
  • 40b Viciano M. Mas-Marzá E. Poyatos M. Sanaú M. Crabtree RH. Peris E. Angew. Chem. Int. Ed.  2005,  44:  444 
  • 41 For the use of an electron-deficient alkene to facilitate the reductive elimination of R-R from [R2Ni(bipy)] species, see: Yamamoto T. Yamamoto A. Ikeda S. J. Am. Chem. Soc.  1971,  93:  3350 
  • For the use of electron-deficient styrenes as additives in catalysis, see:
  • 42a Giovannini R. Studemann T. Dussin G. Knochel P. Angew. Chem. Int. Ed.  1998,  37:  2387 
  • 42b Giovannini R. Studemann T. Devasagayaraj A. Dussin G. Knochel P. J. Org. Chem.  1999,  64:  3544 
  • 42c For the use of methyl acrylate, see: Bercot EA. Rovis T. J. Am. Chem. Soc.  2002,  124:  174 
  • 42d For the use of fumaronitrile, see: Lau J. Sustmann R. Tetrahedron Lett.  1985,  26:  4907 
  • 42e For the use of dimethyl fumarate, see: Sustmann R. Lau J. Zipp M. Tetrahedron Lett.  1986,  27:  5207 
  • 42f van Asselt R. Elsevier CJ. Tetrahedron  1994,  50:  323 
  • It was shown that certain organophosphorus compounds accelerate reductive elimination from a nickel complex (albeit not in a catalytic reaction). The authors attributed the effect to the size of the phosphorus additive rather than its electronic nature:
  • 43a For the use of Ph3P as an additive to stabilize an [Ni(NHC)] catalyst, see: Komiya S. Abe Y. Yamamoto A. Yamamoto T. Organometallics  1983,  2:  1466 
  • 43b Sawaki R. Sato Y. Mori M. Org. Lett.  2004,  6:  1131 
  • The effects of phosphorus ligands upon reductive elimination from [Ni(NHC)alkyl] complexes to give alkyl imidazolium salts have been studied. In contrast, our observation that the NHC was not consumed suggests that one of the other ligands (for example H or OTf) significantly affects the properties and behavior of the metal complex:
  • 44a McGuinness DS. Saendig N. Yates BF. Cavell KJ. J. Am. Chem. Soc.  2001,  123:  4029 
  • 44b Clement ND. Cavell KJ. Angew. Chem. Int. Ed.  2004,  43:  3845 
  • 45a Liang L. Feng X. Liu J. Rieke PC. Fryxell GE. Macromolecules  1998,  31:  7845 
  • 45b Pelton R. Adv. Colloid Interface Sci.  2000,  85:  1 
  • 45c Maeda Y. Nakamura T. Ikeda I. Macromolecules  2001,  34:  1391 
  • 46 Beak has also reported regioselective β′-lithiation and alkylation of α,β-unsaturated amides: Beak P. Kempf DJ. Wilson KD. J. Am. Chem. Soc.  1985,  107:  4745 
  • For examples of reactions between olefins and phenyl isocyanate with tin(IV) chloride, see:
  • 47a Baker JW. Holdsworth JB. J. Chem. Soc.  1945,  724 
  • 47b For examples of the addition of iodine or chlorosulfonyl isocyanates to unsymmetrical olefins, see: Baker JW. An. Real Soc. Esp. Fis. Quim., B  1949,  45:  381 
  • 47c Drefahl G. Ponsold K. Chem. Ber.  1960,  93:  519 
  • 47d Moriconi EJ. Kelly JF. J. Org. Chem.  1968,  33:  3036 
  • 47e Hassner A. Hoblitt RP. Heathcock C. Kropp JE. Lorber M. J. Am. Chem. Soc.  1970,  92:  1326 
  • 48 On deprotection, see: Lacey RN. J. Chem. Soc.  1960,  1633 
  • 49a Duong HA. Cross MJ. Louie J. J. Am. Chem. Soc.  2004,  126:  11438 
  • 49b Duong HA. Louie J. Tetrahedron  2006,  62:  7552 
  • 50a Duong HA. Tekavec TN. Arif AM. Louie J. Chem. Commun.  2004,  112 
  • 50b Duong HA. Cross MJ. Louie J. Org. Lett.  2004,  6:  4679 
  • 51a Posner GH. An Introduction to Synthesis Using Organocopper Reagents   Wiley-Interscience; New York: 1980. 
  • 51b On catalyzed conjugate addition, see: Perlmutter P. Conjugate Addition Reactions in Organic Synthesis   Pergamon; Oxford: 1992. 
  • 51c Lopez F. Minnaard AJ. Feringa BL. Acc. Chem. Res.  2007,  40:  179 
  • 51d Christoffers J. Koripelly G. Rosiak A. Rossle M. Synthesis  2007,  1279 
  • 51e Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • For pioneering work in chlorotrimethylsilane-modified dialkylcuprate conjugate addition reactions, see:
  • 52a Corey EJ. Hannon FJ. Boaz NW. Tetrahedron  1989,  45:  545 
  • 52b Horiguchi Y. Komatsu M. Kuwajima I. Tetrahedron Lett.  1989,  30:  7087 
  • For thermal reactions, see:
  • 53a For Lewis acid promoted reactions, see: Albisetti CJ. Fisher NG. Hogsed MJ. Joyce RM. J. Am. Chem. Soc.  1956,  78:  2637 
  • 53b Büchi G. Koller E. Perry CW. J. Am. Chem. Soc.  1964,  86:  5646 
  • 53c Snider BB. Deutsch EA. J. Org. Chem.  1983,  48:  1822 
  • 54 For enal- and enone-derived coupling reactions of allylnickel complexes (stoichiometric in nickel sunlamp irradiation), see: Johnson JR. Tully PS. Mackenzie PB. Sabat M. J. Am. Chem. Soc.  1991,  113:  6172 
  • 55 On using allylboron reagents and enones, see: Sieber JD. Liu S. Morken JP. J. Am. Chem. Soc.  2007,  129:  2214 
  • 56 For nickel-catalyzed intermolecular coupling of enones and alkynes, see: Herath A. Thompson BB. Montgomery J. J. Am. Chem. Soc.  2007,  129:  8712 
  • For the preparation of geometrically defined enolsilanes from aldehydes and ketones, see:
  • 57a House HO. Czuba LJ. Gall M. Olmstead HD. J. Org. Chem.  1969,  34:  2324 
  • 57b Heathcock CH. Buse CT. Kleschick WA. Pirrung MC. Sohn JE. Lampe J. J. Org. Chem.  1980,  45:  1066 
  • 57c Corey EJ. Gross AW. Tetrahedron Lett.  1984,  25:  495 
  • 57d Hall PL. Gilchrist JH. Collum DB. J. Am. Chem. Soc.  1991,  113:  9571 
  • 57e Denmark SE. Pham SM. J. Org. Chem.  2003,  68:  5045 
  • For general reviews on enolsilane reactions, see:
  • 58a Brownbridge P. Synthesis  1983,  85 
  • 58b Kuwajima I. Nakamura E. Acc. Chem. Res.  1985,  18:  181 
  • 58c Berrisford DJ. Angew. Chem., Int. Ed. Engl.  1995,  34:  178 
  • On protonation, see:
  • 59a On α-chlorination, see: Ishihara K. Nakashima D. Hiraiwa Y. Yamamoto H. J. Am. Chem. Soc.  2003,  125:  24 
  • 59b On fluorination, see: Zhang Y. Shibatomi K. Yamamoto H. J. Am. Chem. Soc.  2004,  126:  15038 
  • 59c On epoxidation, see: Cahard D. Audouard C. Plaquevent JC. Roques N. Org. Lett.  2000,  2:  3699 
  • 59d Davis FA. Sheppard AC. Chen BC. Haque MS. J. Am. Chem. Soc.  1990,  112:  6679 
  • 59e On dihydroxylation, see: Ishii A. Kojima J. Mikami K. Org. Lett.  1999,  1:  2013 
  • 59f On aldol reactions, see: Morikawa K. Park J. Andersson PG. Hashiyama T. Sharpless KB. J. Am. Chem. Soc.  1993,  115:  8463 
  • 59g Evans DA. Masse CE. Wu J. Org. Lett.  2002,  4:  3375 
  • 59h Evans DA. Wu J. Masse CE. MacMillan DWC. Org. Lett.  2002,  4:  3379 
  • 60 Murakami M. Ashida S. Chem. Commun.  2006,  4599 
12

For intramolecular examples of a carbonyl-ene reaction between monosubstituted alkenes and sterically demanding aldehydes, see refs. 10a and 10b.