Synlett 2012(2): 278-284  
DOI: 10.1055/s-0031-1290077
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of Geometrically Strained, Oxindole-Appended Vinyl Cyclopropanes and Highly Substituted Cyclopentenes via Sulfur Ylide Cyclopropanation and Vinyl Cyclopropane Rearrangement

Kandapalam Arun Prasath Lingama, Ponnusamy Shanmugam*a, Kodirajan Selvakumarb
a Organic Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
Fax: +91(44)24911589; e-Mail: shanmu196@rediffmail.com;
b Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India
Further Information

Publication History

Received 5 October 2011
Publication Date:
03 January 2012 (online)

Abstract

An efficient diastereoselective synthesis of oxindole-­appended vinyl cyclopropanes from bromo isomerised Morita-Baylis-Hillman adducts of isatin with activated alkylidene and isatilidines via sulfur ylide cyclopropanation reaction have been achieved. The synthesised vinyl cyclopropanes have undergone vinyl cyclopropane rearrangement and [3+2] cycloaddition with an allene to afford dispiro bisoxindole bridged by cyclopentene and spirocyclopentene-2-oxindole-bridged spirocyclopropane-2-oxindole derivatives, respectively.

    References and Notes

  • 1a Pietruszka J. Chem. Rev.  2003,  103:  1051 
  • 1b Wessjohann LA. Brandt W. Chem. Rev.  2003,  103:  1625 
  • 1c Brackmann F. De Meijere A. Chem. Rev.  2007,  107:  4538 
  • 2a Trost BM. Yasukata T. J. Am. Chem. Soc.  2001,  123:  7162 
  • 2b Wender PA. Barziay CM. Dyckman A.
    J. Am. Chem. Soc.  2001,  123:  179 
  • 2c Sebelius S. Olsson VJ. Szabo KJ. J. Am. Chem. Soc.  2005,  127:  10478 
  • 2d Xie H. Zu L. Li H. Wang J. Wang W. J. Am. Chem. Soc.  2007,  129:  10886 
  • 3a Li A.-H. Dai L.-X. Aggarwal VK. Chem. Rev.  1997,  97:  2341 
  • 3b Rubin M. Rubina M. Gevorgyan V. Chem. Rev.  2007,  107:  3117 
  • 3c Lebel H. Marcoux J.-F. Molinaro C. Charette AB. Chem. Rev.  2003,  103:  977 
  • 3d Jiang H. Deng X. Sun X. Tang Y. Dai L.-X. J. Org. Chem.  2005,  70:  10202 
  • 3e Ye S. Huang ZZ. Xia CA. Tang Y. Dai L.-X. J. Am. Chem. Soc.  2002,  124:  2432 
  • 4a Carson CA. Kerr MA. Chem. Soc. Rev.  2009,  38:  3051 
  • 4b Oba M. Nishiyama N. Nishiyama K. Tetrahedron  2005,  61:  8456 
  • 4c Brichacek M. Lee D. Njardarson JT. Org. Lett.  2008,  10:  5023 
  • 5a Pellissier H. Tetrahedron  2008,  64:  7041 
  • 5b Zhu B.-H. Zheng J.-C. Yu C.-B. Sun X.-L. Zhou Y.-G. Shen Q. Tang Y. Org. Lett.  2010,  12:  504 
  • 5c Yang XF. Zhang MJ. Hou X.-L. Dai L.-X. J. Org. Chem.  2002,  67:  8097 
  • 5d Aggarwal VK. Winn CL. Acc. Chem. Res.  2004,  37:  611 
  • 6a Reissig H.-U. Zimmer R. Chem. Rev.  2003,  103:  1151 
  • 6b Brichacek M. Villalobos MN. Plichta A. Njardarson JT. Org. Lett.  2011,  13:  1110 
  • 6c Fontana F. Chen C.-C. Aggarwal VK. Org. Lett.  2011,  13:  3454 
  • 6d Trost BM. Fandrick DR. J. Am. Chem. Soc.  2003,  125:  11836 
  • 6e Trost BM. Morris PJ. Angew. Chem. Int. Ed.  2011,  50:  6167 
  • 6f Galliford CV. Scheidt KA. Angew. Chem. Int. Ed.  2007,  46:  8748 
  • 6h Parsons AT. Campbell MJ. Johnson JS. Org. Lett.  2008,  10:  2541 
  • 7a Singh A. Roth GP. Org. Lett.  2011,  13:  2118 
  • 7b Liu T.-L. Xue Z.-Y. Tao H.-Y. Wang C.-J. Org. Biomol. Chem.  2011,  9:  1980 
  • 7c Cheng MN. Wang H. Gong LZ. Org. Lett.  2011,  13:  2418 
  • 7d Zhong F. Chen GY. Lu Y. Org. Lett.  2011,  13:  82 
  • 7e Deng H.-P. Wei Y. Shi M. Org. Lett.  2011,  13:  3348 
  • 7f Tan B. Candeias NR. Barbas CF. J. Am. Chem. Soc.  2011,  133:  4672 
  • 8a Viswambharan B. Selvakumar K. Suchithra M. Shanmugam P. Org. Lett.  2010,  12:  2108 
  • 8b Selvakumar K. Vaithiyanathan V. Shanmugam P. Chem. Commun.  2010,  46:  2826 
  • 8c Lingam KAP. Mandal AB. Shanmugam P. Tetrahedron Lett.  2011,  52:  3610 
  • 9a Baldwin JE. Chem. Rev.  2003,  103:  1197 
  • 9b Davies HML. Kong N. Churchill MR. J. Org. Chem.  1998,  63:  6586 
  • 9c Hudlicky T. Reed JW. Angew. Chem. Int. Ed.  2010,  49:  4864 
  • 10a Cowen BJ. Miller SJ. Chem. Soc. Rev.  2009,  38:  3102 
  • 10b Zhang X.-C. Cao S.-H. Wei Y. Shi M. Chem. Commun.  2010,  47:  1548 
  • 11a Bond RF. Boeyens JCA. Holzapfel CW. Steyn PS. J. Chem. Soc., Perkin Trans. 1  1979,  1751 
  • 11b Greshock TJ. Grubbs AW. Jiao P. Wicklow DT. Gloer JB. Williams RM. Angew. Chem. Int. Ed.  2008,  47:  3573 
  • 13a Appel R. Hartmann N. Mayr H. J. Am. Chem. Soc.  2010,  132:  17894 
  • 13b Lemek T. Mayr H. J. Org. Chem.  2003,  68:  6880 
  • 14 Pohlhaus PD. Sanders SD. Parsons AT. Li W. Johnson JS. J. Am. Chem. Soc.  2008,  130:  8642 
  • 16a Armesto D. Ramos A. Mayoral EP. Ortiz MJ. Agarrabeitia AR. Org. Lett.  2000,  2:  183 
  • 16b Houk KN. Nendel M. Wiest O. Storer JW. J. Am. Chem. Soc.  1997,  119:  10545 
  • 17a Zhang X.-C. Cao S.-H. Wei Y. Shi M. Org. Lett.  2011,  13:  1142 
  • 17b Chen X.-Y. Wen M.-W. Ye S. Wang Z.-X. Org. Lett.  2011,  13:  1138 
12

CCDC 833731 contains the supplementary Crystallographic data of compound 3f. Copy of the data can be obtained

free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].

15

To support our observation, both the geometries (cis and trans) were optimised using the Density Functional Theory (DFT) based B3LYP functional with employing the 6-31+G* basis set. The calculated minimised energy difference between cis and trans is measured as 1.15 kcal/mol. Since the energy difference is comparatively lower, conversion of trans to cis isomer under Lewis acid catalysis is theoretically possible. All calculations were performed using the Gaussian 03 (revision E 0.1) suite of program.