Klin Padiatr 2013; 225(S 01): S62-S72
DOI: 10.1055/s-0033-1337966
Zum 80. Geburtstag von Prof. Riehm
© Georg Thieme Verlag KG Stuttgart · New York

Key Treatment Questions in Childhood Acute Lymphoblastic Leukemia: Results in 5 Consecutive Trials Performed by the ALL-BFM Study Group From 1981 to 2000

Kernfragen der Behandlung von akuten lymphoblastischen Leukämien im Kindesalter: Ergebnisse aus 5 konsekutiven Studien der ALL-BFM-Studiengruppe von 1981 bis 2000
M. Schrappe
1   Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
,
A. Möricke
1   Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
,
A. Reiter
2   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Giessen, Germany
,
G. Henze
3   Department of Pediatric Hematology and Oncology, Charité, Humboldt University, Berlin, Germany
,
K. Welte
4   Department of Pediatric Hematology and Oncology, Medizinische ­Hochschule, Hannover, Germany
,
H. Gadner
5   Department of Pediatrics, St. Anna Kinderspital, Vienna, Austria
,
W.-D. Ludwig
6   Department. of Hematology, Oncology, and Tumor Immunology, Robert-Rössle-Clinic, HELIOS Medical Center Berlin-Buch, Germany
,
J. Ritter
7   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Münster, Germany
,
J. Harbott
8   Oncogenetic Laboratory, University Children’s Hospital, Giessen, Germany
,
G. Mann
5   Department of Pediatrics, St. Anna Kinderspital, Vienna, Austria
,
T. Klingebiel
9   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Frankfurt, Germany
,
B. Gruhn
10   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Jena, Germany
,
C. Niemeyer
11   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Freiburg, Germany
,
B. Kremens
12   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Essen, Germany
,
F. Niggli
13   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Zürich, Switzerland
,
K.-M. Debatin
14   Department of Pediatric Hematology and Oncology, University Children’s Hospital, Ulm, Germany
,
R. Ratei
6   Department. of Hematology, Oncology, and Tumor Immunology, Robert-Rössle-Clinic, HELIOS Medical Center Berlin-Buch, Germany
,
M. Stanulla
1   Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
,
R. Beier
4   Department of Pediatric Hematology and Oncology, Medizinische ­Hochschule, Hannover, Germany
,
G. Cario
1   Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
,
A. Schrauder
1   Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
,
M. Zimmermann
4   Department of Pediatric Hematology and Oncology, Medizinische ­Hochschule, Hannover, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
22 May 2013 (online)

Abstract

Between 1981 and 2000, 6 609 children (<18 years of age) were treated in 5 consecutive trials of the Berlin-Frankfurt-Münster (BFM) study group for childhood acute lymphoblastic leukemia (ALL). Patients were treated in up to 82 centers in Germany, Austria, and Switzerland. Probability of 10-year event-free survival (survival) improved from 65% (77%) in study ALL-BFM 81–78% (85%) in ALL-BFM 95. In parallel to relapse reduction, major efforts focused on reducing acute and late toxicity through advanced risk adaptation of treatment. The major findings derived from these ALL-BFM trials were as follows: 1) preventive cranial radiotherapy could be safely reduced to 12 Gy in T-ALL and high-risk ALL patients and eliminated in non-high-risk non-T-ALL patients, if it was replaced by high-dose and intrathecal methotrexate; 2) omission of delayed reintensification severely impaired outcome of low-risk patients; 3) 6 months less maintenance therapy caused an increase in systemic relapses; 4) slow response to an initial 7-day prednisone window was identified as adverse prognostic factor; 5) condensed induction therapy resulted in a significant improvement of outcome; 6) the daunorubicin dose in induction could be safely reduced in low-risk patients; 7) intensification of consolidation/reintensification treatment led to considerable improvement of outcome in high-risk patients.

Zusammenfassung

In den Jahren von 1981–2000 wurden 6 609 Kinder mit ALL unter 18 Jahren in 5 aufeinander folgenden klinischen Studien der Berlin-Frankfurt-Münster (BFM) Gruppe in bis zu 82 Kliniken in Deutschland, Österreich und der Schweiz behandelt. Die 10 Jahres-Wahrscheinlichkeit des ereignisfreien Überlebens (bzw. Gesamtüberlebens) verbesserte sich von 65% (77%) in Studie ALL-BFM 81 auf 78% (85%) in Studie ALL-BFM 95. Neben der Reduktion der Rezidive fokussier­ten die Studien durch einen risikoadaptierten Ansatz vor allem auf eine Senkung der akuten und späten Toxizität. Die wichtigsten Ergebnisse dieser Studien waren folgende: 1) Die präventive Schädelbestrahlung konnte bei T-ALL und Hochrisiko-ALL in der Dosis auf 12 Gy reduziert werden und bei allen anderen Patienten sogar eliminiert werden; 2) die Reinduktionstherapie ist selbst bei Niedrigrisiko ALL unverzichtbar; 3) eine um 6 Monate verkürzte Erhaltungstherapie führt zu einem Anstieg von systemischen Re­zidiven; 4) das verzögerte Ansprechen auf eine 7-tägige Prednisonvorphase ist ein ungünstiger Prognosefaktor; 5) eine „kondensierte“, also dosisintensivierte Induktionstherapie führt zu einem signifikant besseren Therapieergebnis; 6) die Daunorubicin Dosis konnte bei Niedrigrisiko Patienten sicher gesenkt werden; 7) mit einer Intensivierung der Konsolidierungselemente ließ sich bei Hochrisikopatienten ein erheblich besseres Therapieergebnis erreichen.

 
  • References

  • 1 Anderer G, Schrappe M, Brechlin AM et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000; 10: 715-726
  • 2 Arico M, Valsecchi MG, Camitta B et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998-1006
  • 3 Arico M, Valsecchi MG, Conter V et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone-poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood 2002; 100: 420-426
  • 4 Attarbaschi A, Mann G, Panzer-Grümayer R et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol 2008; 26: 3046-3050
  • 5 Balduzzi A, Valsecchi MG, Uderzo C et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 2005; 366: 635-642
  • 6 Beger C, Gerdes K, Lauten M et al. Expression and structural analysis of glucocorticoid receptor isoform gamma in human leukaemia cells using an isoform-specific real-time polymerase chain reaction approach. Br J Haematol 2003; 122: 245-252
  • 7 Biondi A, Schrappe M, De Lorenzo P et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012; 13: 936-945
  • 8 Biondi A, Valsecchi MG, Seriu T et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 2000; 14: 1939-1943
  • 9 Bührer C, Hartmann R, Fengler R et al. Peripheral blast counts at diagnosis of late isolated bone marrow relapse of childhood acute lymphoblastic leukemia predict response to salvage chemotherapy and outcome. Berlin-Frankfurt-Munster Relapse Study Group. J Clin Oncol 1996; 14: 2812-2817
  • 10 Bürger B, Beier R, Zimmermann M et al. Osteonecrosis: a treatment related toxicity in childhood acute lymphoblastic leukemia (ALL) – experiences from trial ALL-BFM 95. Pediatr Blood Cancer 2005; 44: 220-225
  • 11 Bürger B, Zimmermann M, Mann G et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol 2003; 21: 184-188
  • 12 Cario G, Fetz A, Bretscher C et al. Initial leukemic gene expression profiles of patients with poor in vivo prednisone response are similar to those of blasts persisting under prednisone treatment in childhood acute lymphoblastic leukemia. Ann Hematol 2008; 87: 709-716
  • 13 Cario G, Stanulla M, Fine BM et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 2005; 105: 821-826
  • 14 Conter V, Bartram CR, Valsecchi MG et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115: 3206-3214
  • 15 Conter V, Valsecchi MG, Silvestri D et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet 2007; 369: 123-131
  • 16 Cox DR. Regression models and life tables. J R Stat Soc 1972; 34: 187
  • 17 Dördelmann M, Reiter A, Borkhardt A et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lympho­blastic leukemia. Blood 1999; 94: 1209-1217
  • 18 Flohr T, Schrauder A, Cazzaniga G et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771-782
  • 19 Gaynon PS, Bleyer WA, Steinherz PG et al. Modified BFM therapy for children with previously untreated acute lymphoblastic leukemia and unfavorable prognostic features. Report of Children’s Cancer Study Group Study CCG-193P. Am J Pediatr Hematol Oncol 1988; 10: 42-50
  • 20 Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat 1988; 16: 1141-1154
  • 21 Harbott J, Ritterbach J, Ludwig WD et al. Clinical significance of cytogenetic studies in childhood acute lymphoblastic leukemia: experience of the BFM trials. Recent Results Cancer Res 1993; 131: 123-132
  • 22 Henze G, Langermann HJ, Bramswig J et al. Ergebnisse der Studie BFM 76/79 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen [Results of study BFM 76/79 for treatment of acute lymphoblastic leukemia in childhood and adolescence]. Klin Padiatr 1981; 193: 145-154
  • 23 Henze G, Langermann HJ, Fengler R et al. Therapiestudie BFM 79/81 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen: intensivierte Reinduktionstherapie fur Patientengruppen mit unterschiedlichem Rezidivrisiko [Acute lymphoblastic leukemia therapy study BFM 79/81 in children and adolescents: intensified reinduction therapy for patients with different risk for relapse]. Klin Padiatr 1982; 194: 195-203
  • 24 Henze G, Langermann HJ, Kaufmann U et al. Thymic involvement and initial white blood count in childhood acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 1981; 3: 369-376
  • 25 Hiddemann W, Wormann B, Ritter J et al. Frequency and clinical significance of DNA aneuploidy in acute leukemia. Ann N Y Acad Sci 1986; 468: 227-240
  • 26 Hijiya N, Hudson MM, Lensing S et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. Jama 2007; 297: 1207-1215
  • 27 Hustu HO, Aur RJ, Verzosa MS et al. Prevention of central nervous system leukemia by irradiation. Cancer 1973; 32: 585-597
  • 28 Kalbfleisch JD, Prentice RL In: The statistical analysis of failure time data. John Wiley; New York: 1980: 163-188
  • 29 Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457-481
  • 30 Krappmann P, Paulides M, Stohr W et al. Almost normal cognitive function in patients during therapy for childhood acute lymphoblastic leukemia without cranial irradiation according to ALL-BFM 95 and COALL 06-97 protocols: results of an Austrian-German multicenter longitudinal study and implications for follow-up. Pediatr Hematol Oncol 2007; 24: 101-109
  • 31 Lange BJ, Bostrom BC, Cherlow JM et al. Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 2002; 99: 825-833
  • 32 Langermann HJ, Henze G, Wulf M et al. Abschatzung der Tumorzellmasse bei der akuten lymphoblastischen Leukämie im Kindesalter: prognostische Bedeutung und praktische Anwendung [Estimation of tumor cell mass in childhood acute lymphoblastic leukemia: prognostic significance and practical application]. Klin Padiatr 1982; 194: 209-213
  • 33 Lauten M, Beger C, Gerdes K et al. Expression of heat-shock protein 90 in glucocorticoid-sensitive and -resistant childhood acute lymphoblastic leukaemia. Leukemia 2003; 17: 1551-1556
  • 34 Lauten M, Fernandez-Munoz I, Gerdes K et al. Kinetics of the in vivo expression of glucocorticoid receptor splice variants during prednisone treatment in childhood acute lymphoblastic leukaemia. Pediatr Blood Cancer 2009; 52: 459-463
  • 35 Lauten M, Schrauder A, Kardinal C et al. Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance. Leukemia 2006; 20: 820-826
  • 36 Löning L, Zimmermann M, Reiter A et al. Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 2000; 95: 2770-2775
  • 37 Ludwig WD, Rieder H, Bartram CR et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 1998; 92: 1898-1909
  • 38 Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50: 163-170
  • 39 Möricke A, Reiter A, Zimmermann M et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008; 111: 4477-4489
  • 40 Moricke A, Zimmermann M, Reiter A et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24: 265-284
  • 41 Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758-764
  • 42 Nachman JB, Sather HN, Sensel MG et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998; 338: 1663-1671
  • 43 Nguyen K, Devidas M, Cheng SC et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study. Leukemia 2008; 22: 2142-2150
  • 44 Palmi C, Vendramini E, Silvestri D et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia 2012; 26: 2245-2253
  • 45 Peters C, Schrauder A, Schrappe M et al. Allogeneic haematopoietic stem cell transplantation in children with acute lymphoblastic leukaemia: the BFM/IBFM/EBMT concepts. Bone Marrow Transplant 2005; 35: S9-S11
  • 46 Pieters R, Schrappe M, De Lorenzo P et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240-250
  • 47 Pui CH, Campana D, Pei D et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360: 2730-2741
  • 48 Reiter A, Schrappe M, Ludwig WD et al. Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 1994; 84: 3122-3133
  • 49 Rhein P, Scheid S, Ratei R et al. Gene expression shift towards normal B cells, decreased proliferative capacity and distinct surface receptors characterize leukemic blasts persisting during induction therapy in childhood acute lymphoblastic leukemia. Leukemia 2007; 21: 897-905
  • 50 Riehm H, Feickert HJ, Schrappe M et al. Therapy results in five ALL-BFM studies since 1970: implications of risk factors for prognosis. Haematol Blood Transfus 1987; 30: 139-146
  • 51 Riehm H, Gadner H, Henze G et al. Results and significance of six randomized trials in four consecutive ALL-BFM studies. Haematol Blood Transfus 1990; 33: 439-450
  • 52 Riehm H, Gadner H, Henze G et al. Acute Lymphoblastic Leukemia: Treatment Results in Three BFM Studies (1970–1981). In: Murphy SB, Gilbert JR. eds. Leukemia Research: Advances in Cell Biology and Treatment. Elsevier Science Publishing; Amsterdam: 1983: 251-263
  • 53 Riehm H, Gadner H, Henze G et al. The Berlin Childhood Acute Lymphoblastic Leukemia Therapy Study, 1970–1976. Amer J Ped Hem/Onc 1980; 2: 299-305
  • 54 Riehm H, Gadner H, Welte K. Die West-Berliner Studie zur Behandlung der akuten lymphoblastischen Leukämie des Kindes – Erfahrungsbericht nach 6 Jahren [The west-berlin therapy study of acute lymphoblastic leukemia in childhood – report after 6 years]. Klin Padiatr 1977; 189: 89-102
  • 55 Riehm H, Reiter A, Schrappe M et al. Die Corticosteroid-abhängige Dezimierung der Leukämiezellzahl im Blut als Prognosefaktor bei der akuten lymphoblastischen Leukämie im Kindesalter (Therapiestudie ALL-BFM 83) [The in vivo response on corticosteroid therapy as an additional prognostic factor in childhood acute lymphoblastic leukemia (therapy study ALL-BFM 83)]. Klin Padiatr 1986; 199: 151-160
  • 56 Roberts KG, Morin RD, Zhang J et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153-166
  • 57 Robison LL, Armstrong GT, Boice JD et al. The Childhood Cancer Survivor Study: a National Cancer Institute-supported resource for outcome and intervention research. J Clin Oncol 2009; 27: 2308-2318
  • 58 Schmiegelow K, Al-Modhwahi I, Andersen MK et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 2009; 113: 6077-6084
  • 59 Schmiegelow K, Forestier E, Kristinsson J et al. Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 2009; 23: 557-564
  • 60 Schrappe M, Arico M, Harbott J et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood 1998; 92: 2730-2741
  • 61 Schrappe M, Beck J, Brandeis WE et al. Die Behandlung der akuten lymphoblastischen Leukamie im Kindes- und Jugendalter: Ergebnisse der multizentrischen Therapiestudie ALL-BFM 81 [Treatment of acute lymphoblastic leukemia in childhood and adolescence: results of the multicenter therapy study ALL-BFM 81]. Klin Padiatr 1987; 199: 133-150
  • 62 Schrappe M, Camitta B, Pui CH et al. Long-term results of large prospective trials in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 2193-2194
  • 63 Schrappe M, Hunger SP, Pui CH et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 2012; 366: 1371-1381
  • 64 Schrappe M, Nachman J, Hunger S et al. ‘Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985–2000)’. Leukemia 2010; 24: 253-254
  • 65 Schrappe M, Reiter A, Henze G et al. Prevention of CNS recurrence in childhood ALL: results with reduced radiotherapy combined with CNS-directed chemotherapy in four consecutive ALL-BFM trials. Klin Padiatr 1998; 210: 192-199
  • 66 Schrappe M, Reiter A, Ludwig WD et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000; 95: 3310-3322
  • 67 Schrappe M, Reiter A, Riehm H. Prophylaxis and treatment of neoplastic meningeosis in childhood acute lymphoblastic leukemia. J Neurooncol 1998; 38: 159-165
  • 68 Schrappe M, Reiter A, Zimmermann M et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia 2000; 14: 2205-2222
  • 69 Schrappe M, Valsecchi MG, Bartram CR et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011; 118: 2077-2084
  • 70 Schrauder A, Reiter A, Gadner H et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006; 24: 5742-5749
  • 71 Stanulla M, Dynybil C, Bartels DB et al. The NQO1 C609T polymorphism is associated with risk of secondary malignant neoplasms after treatment for childhood acute lymphoblastic leukemia: a matched-pair analysis from the ALL-BFM study group. Haematologica 2007; 92: 1581-1582
  • 72 Stanulla M, Löning L, Welte K et al. Secondary brain tumours in children with ALL. Lancet 1999; 354: 1126-1127
  • 73 Stanulla M, Schäffeler E, Flohr T et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. Jama 2005; 293: 1485-1489
  • 74 Stanulla M, Schäffeler E, Möricke A et al. Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin-Frankfurt-Munster protocols. Blood 2009; 114: 1314-1318
  • 75 Stanulla M, Schrappe M, Brechlin AM et al. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 2000; 95: 1222-1228
  • 76 Stanulla M, Schunemann HJ. Thioguanine versus mercaptopurine in childhood ALL. Lancet 2006; 368: 1304-1306
  • 77 Toyoda Y, Manabe A, Tsuchida M et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol 2000; 18: 1508-1516
  • 78 Tubergen DG, Gilchrist GS, O’Brien RT et al. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Childrens Cancer Group phase III trial. J Clin Oncol 1993; 11: 527-537
  • 79 Uderzo C, Balduzzi A, de Lorenzo P et al. Prospective study on allogeneic bone marrow transplantation (allo BMT) versus chemotherapy (chemo) for very high-risk (VHR) childhood acute lymphoblastic leukaemia in first complete remission. Bone Marrow Transplant 2001; 28: S22-S24
  • 80 van der Velden VH, Cazzaniga G, Schrauder A et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604-611
  • 81 van der Velden VH, Corral L, Valsecchi MG et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009; 23: 1073-1079
  • 82 van der Velden VH, Panzer-Grümayer ER, Cazzaniga G et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007; 21: 706-713
  • 83 van Dongen JJ, Seriu T, Panzer-Grümayer ER et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731-1738
  • 84 Welte K, Reiter A, Mempel K et al. A randomized phase-III study of the efficacy of granulocyte colony-stimulating factor in children with high-risk acute lymphoblastic leukemia. Berlin-Frankfurt-Munster Study Group. Blood 1996; 87: 3143-3150
  • 85 Yang JJ, Cheng C, Yang W et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. Jama 2009; 301: 393-403