Synthesis 2016; 48(01): 136-140
DOI: 10.1055/s-0035-1560498
paper
© Georg Thieme Verlag Stuttgart · New York

New Reaction of Fullerene C60 with Cyanoacrylates and Ethylmagnesium Bromide in the Presence of Titanium(IV) Isopropoxide

Airat R. Tuktarov*
Institute of Petrochemistry and Catalysis, Russian Academy of Science, pr. Oktyabrya 141, 450075, Ufa, Russian Federation   Email: tuktarovar@gmail.com
,
Zulfiya R. Shakirova
Institute of Petrochemistry and Catalysis, Russian Academy of Science, pr. Oktyabrya 141, 450075, Ufa, Russian Federation   Email: tuktarovar@gmail.com
,
Artur R. Khuzin
Institute of Petrochemistry and Catalysis, Russian Academy of Science, pr. Oktyabrya 141, 450075, Ufa, Russian Federation   Email: tuktarovar@gmail.com
,
Usein M. Dzhemilev
Institute of Petrochemistry and Catalysis, Russian Academy of Science, pr. Oktyabrya 141, 450075, Ufa, Russian Federation   Email: tuktarovar@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 16 July 2015

Accepted after revision: 18 September 2015

Publication Date:
05 October 2015 (online)


Abstract

The reaction of fullerene C60 with cyanoacrylates and ethylmagnesium bromide in the presence of stoichiometric amounts of titanium(IV) isopropoxide was studied for the first time. Under the developed conditions, cyanoacrylates, unlike carboxylic acid esters and nitriles, were found to react with C60 to form aminofullerocyclopropanes, which are otherwise difficult to access.

Supporting Information

 
  • References

    • 1a Friedman SH, Ganapathi PS, Rubin Y, Kenyon GL. J. Med. Chem. 1998; 41: 2424
    • 1b Brettreich M, Hirsch A. Tetrahedron Lett. 1998; 39: 2731
    • 1c Mashino T, Shimotohno K, Ikegami N, Nishikawa D, Okuda K, Takahashi K, Nakamura S, Mochizuki M. Bioorg. Med. Chem. Lett. 2005; 15: 1107
    • 2a Dugan LL, Turelsky DM, Du C, Lobner D, Wheeler M, Almli R, Shen CK. F, Luh TY, Choi D, Lin TS. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 9434
    • 2b Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C. Biochem. Biophys. Res. Commun. 2002; 294: 116
    • 2c Bisaglia M, Natalini B, Pelliciary R, Straface E, Malorni W, Monti D, Franceschi C, Schettini G. J. Neurochem. 2000; 74: 1197
    • 3a Yang XL, Fan CH, Zhu HS. Toxicology in Vitro 2002; 16: 41
    • 3b Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin VL. Nano Lett. 2004; 4: 1881
    • 3c Gubskaya VP, Berezhnaya LS, Gubaidullin AT, Faingold II, Kotelnikova RA, Konovalova NP, Morozov VI, Litvinov IA, Nuretdinov IA. Org. Biomol. Chem. 2007; 5: 976
  • 4 Wharton T, Wilson LJ. Bioorg. Med. Chem. 2002; 10: 3545
    • 5a Bingel C. Chem. Ber. 1993; 126: 1957
    • 5b Camps X, Hirsch A. J. Chem. Soc., Perkin Trans. 1 1997; 1595
    • 6a Suzuki T, Li Q, Khemani KC, Wudl F. J. Am. Chem. Soc. 1992; 114: 7301
    • 6b Diederich F, Thilge C. Science 1996; 271: 317
    • 6c Tuktarov АR, Dzhemilev UM. Russ. Chem. Rev. 2010; 79: 585
    • 7a Tuktarov АR, Korolev VV, Khalilov LM, Ibragimov АG, Dzhemilev UM. Russ. J. Org. Chem. 2009; 45: 1594
    • 7b Tuktarov АR, Korolev VV, Sabirov DSh, Dzhemilev UM. Russ. J. Org. Chem. 2011; 47: 41
    • 7c Tuktarov AR, Korolеv VV, Tulyabaev AR, Popod’ko NR, Khalilov LM, Dzhemilev UM. Tetrahedron Lett. 2011; 52: 834
    • 8a Smith III AB, Strongin RM, Brard L, Furst GT, Romanow WJ, Owens KG, Goldschimdt RJ, King RC. J. Am. Chem. Soc. 1995; 117: 5492
    • 8b Pellicciari R, Annibali D, Costantino G, Marinozzi M, Natalini B. Synlett 1997; 1196
    • 8c Sokolov VI, Nefedova MN, Potolokova TV, Bashilov VV. Pure Appl. Chem. 2001; 73: 275
    • 8d Pellicciari R, Natalini B, Potolokova TV, Marinozzi M, Sokolov VI, Nefedova MN, Peregudov AS. Synth. Commun. 2003; 33: 903
    • 8e Nakamura Y, Inamura K, Oomuro R, Laurenco R, Tidwell TT, Nishimura J. Org. Biomol. Chem. 2005; 3: 3032
    • 8f Tuktarov АR, Akhmetov АR, Sabirov DSh, Khalilov LM, Ibragimov АG, Dzhemilev UM. Russ. Chem. Bull. 2009; 58: 1724
    • 8g Tuktarov АR, Akhmetov АR, Khalilov LM, Dzhemilev UM. Russ. Chem. Bull. 2010; 59: 611
    • 8h Tuktarov АR, Akhmetov АR, Khasanova LL, Khalilov LM, Dzhemilev UM. Russ. Chem. Bull. 2010; 59: 1959
    • 9a Tuktarov AR, Khuzin AA, Popod’ko NR, Dzhemilev UM. Tetrahedron Lett. 2012; 53: 3123
    • 9b Tuktarov AR, Khuzina LL, Popod’ko NR, Dzhemilev UM. Tetrahedron Lett. 2013; 54: 2146
    • 10a Kulinkovich OG, Sviridov SV, Vasilevskii DA, Pritytskaya TS. Russ. J. Org. Chem. 1989; 25: 2027
    • 10b Kulinkovich OG, Savchenko AI, Sviridov SV, Vasilevski DA. Mendeleev Commun. 1993; 230
    • 10c Kulinkovich OG, De Meijere A. Chem. Rev. 2000; 100: 2789
    • 10d Wolan A, Six Y. Tetrahedron 2010; 66: 15
  • 11 Dzhemilev UM, Famutdinova MA, Popod’ko NR, Tuktarov AR. Tetrahedron Lett. 2013; 54: 3260
  • 12 Tuktarov AR, Khuzin AA, Shakirova ZR, Dzhemilev UM. Tetrahedron Lett. 2014; 55: 5003
    • 13a Yadav JS, Subba Reddy BV, Basak AK, Vasali B, Venkat Narsaiah A, Nagaiah K. Eur. J. Org. Chem. 2004; 546
    • 13b Abaee MS, Cheraghi S. Turk. J. Chem. 2014; 38: 650
  • 14 Hirsch A, Soi A, Karfunhel HR. Angew. Chem., Int. Ed. Engl. 1992; 31: 766
    • 15a Bertus P, Szymoniak J. Synlett 2003; 265
    • 15b Laroche C, Harakat D, Bertus P, Szymoniak J. Org. Biomol. Chem. 2005; 3: 3482