Synlett 2020; 31(15): 1435-1442
DOI: 10.1055/s-0040-1707180
synpacts
© Georg Thieme Verlag Stuttgart · New York

Electronically Governed ROMP: Expanding Sequence Control for Donor–Acceptor Conjugated Polymers

Stephen J. Koehler
,
Jinzhen Hu
,
The authors gratefully acknowledge financial support from Pennsylvania State University.
Further Information

Publication History

Received: 20 April 2020

Accepted after revision: 20 May 2020

Publication Date:
14 July 2020 (online)


Abstract

Controlling the primary sequence of synthetic polymers remains a grand challenge in chemistry. A variety of methods that exert control over monomer sequence have been realized wherein differential reactivity, pre-organization, and stimuli-response have been key factors in programming sequence. Whereas much has been established in nonconjugated systems, π-extended frameworks remain systems wherein subtle structural changes influence bulk properties. The recent introduction of electronically biased ring-opening metathesis polymerization (ROMP) extends the repertoire of feasible approaches to prescribe donor–acceptor sequences in conjugated polymers, by enabling a system to achieve both low dispersity and controlled polymer sequences. Herein, we discuss recent advances in obtaining well-defined (i.e., low dispersity) polymers featuring donor–acceptor sequence control, and present our design of an electronically ambiguous (4-methoxy-1-(2-ethylhexyloxy) and benzothiadiazole-(donor–acceptor-)based [2.2]paracyclophanediene monomer that undergoes electronically dictated ROMP. The resultant donor–acceptor polymers were well-defined (Đ = 1.2, Mn > 20 k) and exhibited lower energy excitation and emission in comparison to ‘sequence-ill-defined’ polymers. Electronically driven ROMP expands on prior synthetic methods to attain sequence control, while providing a promising platform for further interrogation of polymer sequence and resultant properties.

1 Introduction to Sequence Control

2 Sequence Control in Polymers

3 Multistep-Synthesis-Driven Sequence Control

4 Catalyst-Dictated Sequence Control

5 Electronically Governed Sequence Control

6 Conclusions

 
  • References and Notes

  • 1 Lutz J.-F. Macromol. Rapid Commun. 2017; 38: 1700582
  • 2 Lutz J.-F, Ouchi M, Liu DR, Sawamoto M. Science 2013; 341: 1238149
  • 3 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 4 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
  • 5 Pfeifer S, Lutz J.-F. J. Am. Chem. Soc. 2007; 129: 9542
  • 6 De Neve J, Haven JJ, Maes L, Junkers T. Polym. Chem. 2018; 9: 4692
  • 7 Elacqua E, Gregor M. Angew. Chem. Int. Ed. 2019; 58: 9527
  • 8 Gutekunst WR, Hawker CJ. J. Am. Chem. Soc. 2015; 137: 8038
  • 9 Nowalk JA, Fang C, Short AL, Weiss RM, Swisher JH, Liu P, Meyer TY. J. Am. Chem. Soc. 2019; 141: 5741
  • 10 Lutz J.-F. Polym. Chem. 2010; 1: 55
  • 11 Badi N, Lutz J.-F. Chem. Soc. Rev. 2009; 38: 3383
  • 12 Li Z.-L, Lv A, Du F.-S, Li Z.-C. Macromolecules 2014; 47: 5942
  • 13 Espeel P, Carrette LL. G, Bury K, Capenberghs S, Martins JC, Du Prez FE, Madder A. Angew. Chem. Int. Ed. 2013; 52: 13261
  • 14 Pfeifer S, Zarafshani Z, Badi N, Lutz J.-F. J. Am. Chem. Soc. 2009; 131: 9195
  • 15 Hibi Y, Ouchi M, Sawamoto M. Angew. Chem. Int. Ed. 2011; 50: 7434
  • 16 Kikuchi S, Saito K, Akita M, Inagaki A. Organometallics 2018; 37: 359
  • 17 Murata K, Saito K, Kikuchi S, Akita M, Inagaki A. Chem. Commun. 2015; 51: 5717
  • 18 Anastasaki A, Nikolaou V, Pappas GS, Zhang Q, Wan C, Wilson P, Davis TP, Whittaker MR, Haddleton DM. Chem. Sci. 2014; 5: 3536
  • 19 Moatsou D, Hansell CF, O'Reilly RK. Chem. Sci. 2014; 5: 2246
  • 20 Parker KA, Sampson NS. Acc. Chem. Res. 2016; 49: 408
  • 21 Kobayashi S, Pitet LM, Hillmyer MA. J. Am. Chem. Soc. 2011; 133: 5794
  • 22 Zhang J, Matta ME, Hillmyer MA. ACS Macro Lett. 2012; 1: 1383
  • 23 Xu J, Shanmugam S, Fu C, Aguey-Zinsou K.-F, Boyer C. J. Am. Chem. Soc. 2016; 138: 3094
  • 24 Elling BR, Su JK, Feist JD, Xia Y. Chem 2019; 5: 2691
  • 25 Lawrence J, Goto E, Ren JM, McDearmon B, Kim DS, Ochiai Y, Clark PG, Laitar D, Higashihara T, Hawker CJ. J. Am. Chem. Soc. 2017; 139: 13735
  • 26 Liang L, Wang J.-T, Xiang X, Ling J, Zhao F.-G, Li W.-S. J. Mater. Chem. A 2014; 2: 15396
  • 27 Fortney A, Tsai C.-H, Banerjee M, Yaron D, Kowalewski T, Noonan KJ. T. Macromolecules 2018; 51: 9494
  • 28 Palermo EF, McNeil AJ. Macromolecules 2012; 45: 5948
  • 29 Zhang S, Hutchison GR, Meyer TY. Macromol. Rapid Commun. 2016; 37: 882
  • 30 Zhang S, Bauer NE, Kanal IY, You W, Hutchison GR, Meyer TY. Macromolecules 2017; 50: 151
  • 31 Nitti A, Debattista F, Abbondanza L, Bianchi G, Po R, Pasini D. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 1601
  • 32 Morin P.-O, Bura T, Leclerc M. Mater. Horiz. 2016; 3: 11
  • 33 Zhang L, Colella NS, Cherniawski BP, Mannsfeld SC. B, Briseno AL. ACS Appl. Mater. Interfaces 2014; 6 5327
  • 34 Roncali J, Leriche P, Blanchard P. Adv. Mater. 2014; 26: 3821
  • 35 Mishra A, Bäuerle P. Angew. Chem. Int. Ed. 2012; 51: 2020
  • 36 Holliday S, Li Y, Luscombe CK. Prog. Polym. Sci. 2017; 70: 34
  • 37 Liu C, Wang K, Heeger AJ. Chem. Soc. Rev. 2016; 45: 4825
  • 38 Holliday S, Donaghey JE, McCulloch I. Chem. Mater. 2013; 26: 647
  • 39 Yu H, Li S, Schwieter KE, Liu Y, Sun B, Moore JS, Schroeder CM. J. Am. Chem. Soc. 2020; 142: 4852
  • 40 Lu L, Yu L. Adv. Mater. 2014; 26: 4413
  • 41 Ye S, Foster SM, Pollit AA, Cheng S, Seferos DS. Chem. Sci. 2019; 10: 2075
  • 42 Lutz PJ, Hannigan MD, McNeil AJ. Coord. Chem. Rev. 2018; 376: 225
  • 43 Leone AK, Goldberg PK, McNeil AJ. J. Am. Chem. Soc. 2018; 140: 7846
  • 44 Baker MA, Tsai C.-H, Noonan KJ. T. Chem. Eur. J. 2018; 24: 13078
  • 45 Baker MA, Ayuso-Carrillo J, Koos MR. M, MacMillan SN, Vami AJ, Gil RR, Noonan KJ. T. Polym. J. 2020; 52: 83
  • 46 Van Den Eede M, De Winter J, Gerbaux P, Koeckelberghs GG. Macromolecules 2018; 51: 9043
  • 47 Leone AK, Souther KD, Vitek AK, Lapointe AM, Coates GW, Zimmerman PM, McNeil AJ. Macromolecules 2017; 50: 9121
  • 48 Tsai C, Fortney A, Qiu Y, Gil RR, Yaron D, Kowalewski T, Noonan KJ. T. J. Am. Chem. Soc. 2016; 138: 6798
  • 49 Qiu Y, Fortney A, Tsai C, Baker MA, Gil RR, Kowalewski T, Noonan KJ. T. ACS Macro Lett. 2016; 5: 332
  • 50 Todd AD, Bielawski CW. ACS Macro Lett. 2015; 4: 1254
  • 51 Pollit AA, Bridges CR, Seferos DS. Macromol. Rapid Commun. 2015; 36: 65
  • 52 Lidster BJ, Kumar DR, Spring AM, Yu C.-Y, Helliwell M, Raftery J, Turner ML. Org. Biomol. Chem. 2016; 14: 6079
  • 53 Menk F, Mondeshki M, Dudenko D, Shin S, Schollmeyer D, Ceyhun O, Choi T.-L, Zentel R. Macromolecules 2015; 48: 7435
  • 54 Elacqua E, Weck M. Chem. Eur. J. 2015; 21: 7151
  • 55 Chatterjee AK, Choi T.-L, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
  • 56 DFT was conducted with Avogardo interface (Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. http://avogadro.cc/) and ORCA was utilized to run the DFT calculations themselves.
  • 57 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. J. Cheminf. 2012; 4: 17
  • 58 Kumar DR, Lidster BJ, Adams RW, Turner ML. Macromolecules 2018; 51: 4572
  • 59 Spring AM, Yu CY, Horie M, Turner ML. Chem. Commun. 2009; 2676
  • 60 Li X, Zhang Y, Yang R, Huang J, Yang W, Cao Y. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 2325