Synlett 2022; 33(15): 1492-1499
DOI: 10.1055/s-0041-1738071
account

Transformations of Main-Group Organometallics Induced by Transition Metals

Toshikazu Hirao
,
Toru Amaya


Abstract

The oxidative dehydrometallation of silyl or boron enolates is induced by palladium(II) catalyst to result in the versatile introduction of α,β-unsaturated carbon–carbon double bonds via palladium enolates. Selective oxidative cross- and homo-coupling reactions of silyl or boron enolates induced by vanadium(V) oxidant provide a selective synthetic method for accessing 1,4-dicarbonyl compounds in a nucleo­phile-nucleophile coupling mode. The ligand coupling reaction of main-group organometallic compounds induced by vanadium(V) oxi­dant provides a unique method for intramolecular carbon–carbon bond formation of nucleophiles. The last two reactions are a complementary strategy for the nucleophile-electrophile coupling reaction. The dehydrometallation and coupling reactions probably proceed through two- and one-electron oxidation processes, respectively.

1 Introduction

2 Palladium-Catalyzed Dehydrometallation

3 Homo- and Cross-Coupling of Main-Group Organometallic Compounds

4 Oxidative Ligand Coupling of Main-Group Organometallic Compounds

5 Conclusion



Publication History

Received: 22 February 2022

Accepted after revision: 01 April 2022

Article published online:
10 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Present address: Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka 567-0047, Japan.
    • 1b Present address: Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanobata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan.

      For example:
    • 2a Hirao T, Harano Y, Yamana Y, Ohshiro Y, Agawa T. Tetrahedron Lett. 1983; 24: 1255
    • 2b Hirao T, Nagata S, Yamana Y, Agawa T. Tetrahedron Lett. 1985; 26: 5061
    • 2c Hirao T, Nagata S, Agawa T. Chem. Lett. 1985; 14: 1625
    • 3a Ito Y, Hirao T, Saegusa T. J. Org. Chem. 1978; 43: 1011
    • 3b For a review, see: Muzart J. Eur. J. Org. Chem. 2010; 3779
    • 4a Sharpless KB, Lauer RF, Teranishi AY. J. Am. Chem. Soc. 1973; 95: 6137
    • 4b Reich HJ, Reich IL, Renga JM. J. Am. Chem. Soc. 1973; 95: 5813
    • 4c Nicolaou KC, Zhong Y.-L, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
    • 4d Nicolaou KC, Montagnon T, Baran PS, Zhong Y.-L. J. Am. Chem. Soc. 2002; 124: 2245
  • 5 Ito Y, Aoyama H, Hirao T, Mochizuki A, Saegusa T. J. Am. Chem. Soc. 1979; 101: 494
    • 6a Shimizu I, Minami I, Tsuji J. Tetrahedron Lett. 1983; 24: 1797
    • 6b Shimizu I, Minami I, Tsuji J. Tetrahedron Lett. 1983; 24: 1797
    • 6c Minami I, Takahashi K, Shimizu I, Kimura T, Tsuji J. Tetrahedron 1986; 42: 2971
  • 7 Ito Y, Aoyama H, Saegusa T. J. Am. Chem. Soc. 1980; 102: 4519
  • 8 Ito Y, Nakatsuka M, Saegusa T. J. Am. Chem. Soc. 1980; 45: 2022
  • 9 Ito Y, Nakatsuka M, Kise N, Saegusa T. Tetrahedron Lett. 1980; 21: 2673
    • 10a Mukaiyama T, Inomata K, Muraki M. J. Am. Chem. Soc. 1973; 95: 967
    • 10b Evans DA, Vogel E, Nelson JV. J. Am. Chem. Soc. 1979; 101: 6120
    • 10c Hirama M, Masamune S. Tetrahedron Lett. 1979; 24: 2225
    • 10d Mukaiyama T. Angew. Chem. Int. Ed. 2004; 43: 5590
    • 10e Matsuo J, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109
  • 11 Sakamoto Y, Amaya T, Suzuki T, Hirao T. Chem. Eur. J. 2017; 22: 18686
  • 12 Hirao T, Yamada N, Ohshiro Y, Agawa T. Chem. Lett. 1982; 11: 1997
  • 13 Hirao T, Fujihara Y, Tsuno S, Ohshiro Y, Agawa T. Chem. Lett. 1984; 367
  • 14 Hirao T, Enda J, Ohshiro Y, Agawa T. Chem. Lett. 1981; 10: 403
  • 15 Ito Y, Konoike T, Saegusa T. J. Am. Chem. Soc. 1975; 97: 649
  • 16 Fujii T, Hirao T, Ohshiro Y. Tetrahedron Lett. 1992; 33: 5823
  • 17 Nishina M, Moriuchi T, Hirao T. Dalton Trans. 2010; 9936
    • 18a DeMartino MP, Chen K, Baran PS. J. Am. Chem. Soc. 2008; 130: 11546 ; and references therein
    • 18b Guo F, Clift MD, Thomson RJ. Eur. J. Org. Chem. 2012; 4881 ; and references therein
    • 19a Kobayashi Y, Taguchi T, Morikawa T, Tokuno F, Sekiguchi S. Chem. Pharm. Bull. 1980; 28: 262
    • 19b Baciocchi E, Caso A, Ruzziconi R. Synlett 1990; 679
    • 20a Fujii T, Hirao T, Ohshiro Y. Tetrahedron Lett. 1993; 34: 5601
    • 20b Hirao T, Fujii T, Ohshiro Y, Hirao T. Tetrahedron 1994; 50: 10207
  • 21 Fujii T, Hirao T, Ohshiro Y. Tetrahedron Lett. 1994; 35: 8005
  • 22 Amaya T, Masuda T, Maegawa Y, Hirao T. Chem. Commun. 2014; 50: 2279
    • 23a Amaya T, Maegawa Y, Masuda T, Osafune Y, Hirao T. J. Am. Chem. Soc. 2015; 137: 10072
    • 23b Amaya T, Osafune Y, Maegawa Y, Hirao T. Chem. Asian J. 2017; 12: 1301
  • 24 Osafune Y, Jin Y, Hirao T, Tobisu M, Amaya T. Chem. Commun. 2020; 56: 11697
  • 25 Ishikawa T, Ogawa A, Hirao T. J. Am. Chem. Soc. 1998; 120: 5124
    • 26a Ishikawa T, Nonaka S, Ogawa A, Hirao T. Chem. Commun. 1998; 1209
  • 27 Amaya T, Tsukamura Y, Hirao T. Adv. Synth. Catal. 2009; 351: 1025
  • 28 Pelter A, Smith K, Brown HC. In Borane Reagents 1988
    • 29a Pelter A, Pardasani R, Pardasani P. Tetrahedron 2000; 56: 7339
    • 29b Geske DH. J. Phys. Chem. 1959; 63: 1062
    • 29c Music A, Baumann AN, Spieß P, Plantefol A, Jagau TC, Didier D. J. Am. Chem. Soc. 2020; 142: 4341
    • 29d Abley P, Halpern J. J. Chem. Soc. D 1971; 1238
    • 29e Gerleve C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 15468
  • 30 Mizuno H, Sakurai H, Amaya T, Hirao T. Chem. Commun. 2006; 5042
  • 31 Takada T, Sakurai H, Hirao T. J. Org. Chem. 2000; 65: 1511
  • 32 Takada T, Sakurai H, Hirao T. J. Org. Chem. 2001; 66: 300
  • 33 Hirao T, Takada TSakurai H. Org. Lett. 2000; 2: 3659
  • 34 Ishikawa T, Ogawa A, Hirao T. J. Organomet. Chem. 1999; 55: 76
    • 35a Moriuchi T, Yamaguchi M, Kikushima K, Hirao T. Tetrahedron Lett. 2007; 48: 2667
    • 35b Kikushima K, Moriuchi T, Hirao T. Chem. Asian J. 2009; 4: 1213
    • 35c Kikushima K, Moriuchi T, Hirao T. Tetrahedron Lett. 2010; 51: 340
    • 36a Hirao T, Mori M, Ohshiro Y. Chem. Lett. 1991; 783
    • 36b Moriuchi T, Kikushima K, Kajikawa T, Hirao T. Tetrahedron Lett. 2009; 50: 7385
    • 37a Hirao T, Hasegawa T, Muguruma Y, Ikeda I. J. Org. Chem. 1996; 61: 366
    • 37b Hirao T, Asahara M, Muguruma Y, Ogawa A. J. Org. Chem. 1998; 63: 2812
    • 37c Hatano B, Ogawa A, Hirao T. J. Org. Chem. 1998; 63: 9421
    • 37d Hirao T, Hatano B, Imamoto Y, Ogawa A. J. Org. Chem. 1999; 64: 7665
    • 37e Hirao T, Takeuchi H, Ogawa A, Sakurai H. Synlett 2000; 1658
    • 37f Xu X, Hirao T. J. Org. Chem. 2005; 70: 8594
    • 37g Hirao T, Ogawa A, Asahara M, Muguruma Y, Sakurai H. Org. Synth. 2005; 81: 26
    • 37h Amaya T, Miyasaka A, Hirao T. Tetrahedron Lett. 2011; 52: 4567
    • 37i Amaya T, Miyasaka A, Hirao T. Tetrahedron Lett. 2012; 53: 5589