Subscribe to RSS
DOI: 10.1055/s-0042-1751497
Rhodium(III)-Catalyzed C–H Activation in Indole: A Comprehensive Report (2017–2022)
A.M. is grateful to the Department of Science and Technology, Government of India (DST INSPIRE) for providing Senior Research Fellowship. The authors B.G. and S.K.A. are thankful to the Department of Chemistry, University of Delhi, Delhi, India for financial assistance.
Abstract
In the realm of synthetic organic chemistry, the catalysis of directed C–H activation by transition metals is an outstanding and efficient method for the synthesis of natural products, organic materials, and fundamental organic building blocks. Notably, this strategy has experienced remarkable advances in recent years, particularly in its application to various substrate classes, including the essential indole scaffold. Indole is a highly sought-after target in organic chemistry. The significance of indole extends beyond its use in total synthesis and drug discovery. It also serves as an important tool in the development of pharmaceutical agents, agrochemicals, and materials. By targeting indole, synthetic chemists can access a wide range of bioactive compounds, which opens new avenues for drug development and chemical biology research. The synthesis of structurally varied indoles has been greatly aided by the development of a comprehensive toolkit made possible by the use of C–H activation as a versatile functionalization platform. This review highlights the latest breakthroughs in rhodium-catalyzed C–H activation at the C2, C4, and C7 positions of the indole scaffold. These developments represent significant progress in the field and hold promising potential for further advances in the synthesis of indole-based compounds.
1 Introduction
2 The Development of Rhodium-Catalyzed C–H Activation
3 General Mechanistic Introduction to Rh(III)-Catalyzed C–H Activation
4 Direct C–H Functionalization of Indoles
4.1 C2 Activation of Indoles
4.2 C4 Activation of Indoles
4.3 Dual C–H Activation Strategy
4.4 C7 Activation of Indoles
5 Conclusion
Key words
indole - rhodium catalysis - C–H activation - directed C–H functionalization - annulation - hydroarylation - C–H dienylationPublication History
Received: 05 April 2023
Accepted after revision: 16 August 2023
Article published online:
06 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Janowicz AH, Bergman RG. J. Am. Chem. Soc. 1982; 104: 352
- 2 Cope AC, Siekman RW. J. Am. Chem. Soc. 1965; 87: 3272
- 3 Chatt J, Davidson J. J. Chem. Soc. 1965; 843
- 4 Kumar P, Nagtilak PJ, Kapur M. New J. Chem. 2021; 45: 13692
- 5 Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA. Nat. Rev. Methods Primers 2021; 1: 43
- 6 Khake SM, Chatani N. Trends Chem. 2019; 1: 524
- 7 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2018; 119: 2192
- 8 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T. Chem. Soc. Rev. 2018; 47: 6603
- 9 Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
- 10 Chu JC, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 11 Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
- 12 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 13 He J, Wasa M, Chan KS, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 14 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 15 Labinger JA, Bercaw JE. Nature 2002; 417: 507
- 16 Hull KL, Lanni EL, Sanford MS. J. Am. Chem. Soc. 2006; 128: 14047
- 17 Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
- 18 Pan S, Ryu N, Shibata T. J. Am. Chem. Soc. 2012; 134: 17474
- 19 Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
- 20 Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
- 21 Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 22 Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
- 23 Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 24 Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 25 Netz N, Opatz T. Mar. Drugs 2015; 13: 4814
- 26 Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
- 27 Urbina K, Tresp D, Sipps K, Szostak M. Adv. Synth. Catal. 2021; 363: 2723
- 28 Allin SM, Duffy LJ, Page PC. B, McKee V, McKenzie MJ. Tetrahedron Lett. 2007; 48: 4711
- 29 Norwood VM. IV, Huigens RW. III. ChemBioChem 2019; 20: 2273
- 30 Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
- 31 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
- 32 Wang C, Sun H, Fang Y, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 5795
- 33 Lian Y, Hummel JR, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2013; 135: 12548
- 34 Liu G, Shen Y, Zhou Z, Lu X. Angew. Chem. Int. Ed. 2013; 52: 6033
- 35 Shen Y, Liu G, Zhou Z, Lu X. Org. Lett. 2013; 15: 3366
- 36 Duan P, Yang Y, Ben R, Yan Y, Dai L, Hong M, Wu Y.-D, Wang D, Zhang X, Zhao J. Chem. Sci. 2014; 5: 1574
- 37 Hu F, Xia Y, Ye F, Liu Z, Ma C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 1364
- 38 Zhao D, Shi Z, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 12426
- 39 Liu B, Song C, Sun C, Zhou S, Zhu J. J. Am. Chem. Soc. 2013; 135: 16625
- 40 Zhen W, Wang F, Zhao M, Du Z, Li X. Angew. Chem. Int. Ed. 2012; 51: 11819
- 41 Shi Z, Schröder N, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 8092
- 42 Wang C, Chen H, Wang Z, Chen J, Huang Y. Angew. Chem. Int. Ed. 2012; 51: 7242
- 43 Chen Y, Wang D, Duan P, Ben R, Dai L, Shao X, Hong M, Zhao J, Huang Y. Nat. Commun. 2014; 5: 4610
- 44 Ackermann L. Chem. Rev. 2011; 111: 1315
- 45 Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
- 46 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
- 47 Wang Y, Sun X, Zhang J, Li J. J. Phys. Chem. A 2017; 121: 3501
- 48 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
- 49 Ackermann L, Vicente R, Althammer A. Org. Lett. 2008; 10: 2299
- 50 Rogge T, Oliveira JC, Kuniyil R, Hu L, Ackermann L. ACS Catal. 2020; 10: 10551
- 51 Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
- 52 Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 53 Kang JW, Maitlis P. J. Am. Chem. Soc. 1968; 90: 3259
- 54 Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
- 55 Hummel JR, Boerth JA, Ellman JA. Chem. Rev. 2017; 117: 9163
- 56 Vasquez-Cespedes S, Wang X, Glorius F. ACS Catal. 2018; 8: 242
- 57 Chen X, Yang S, Li H, Wang B, Song G. ACS Catal. 2017; 7: 2392
- 58 Zhang S.-S, Xia J, Wu J.-Q, Liu X.-G, Zhou C.-J, Lin E, Li Q, Huang S.-L, Wang H. Org. Lett. 2017; 19: 5868
- 59 Zhou CN, Xie HH, Zheng ZA, Xiao YC, Li G, Shen YH, Peng WM, Wang L. Chem. Eur. J. 2018; 24: 5469
- 60 Wu X, Ji H. Org. Biomol. Chem. 2018; 16: 5691
- 61 Xia J, Huang Z, Zhou X, Yang X, Wang F, Li X. Org. Lett. 2018; 20: 740
- 62 Li X, Zhang F, Wu D, Liu Y, Xu G, Peng Y, Liu Z, Huang Y. Tetrahedron 2018; 74: 7364
- 63 Gao M, Yang Y, Chen H, Zhou B. Adv. Synth. Catal. 2018; 360: 100
- 64 Wang X, Zhang J, Chen D, Wang B, Yang X, Ma Y, Szostak M. Org. Lett. 2019; 21: 7038
- 65 Zhang J, Xie H, Zhu H, Zhang S, Reddy Lonka M, Zou H. ACS Catal. 2019; 9: 10233
- 66 Fei X, Li C, Yu X, Liu H. J. Org. Chem. 2019; 84: 6840
- 67 Woerly EM, Roy J, Burke MD. Nat. Chem. 2014; 6: 484
- 68 Wu X, Lu Y, Qiao J, Dai W, Jia X, Ni H, Zhang X, Liu H, Zhao F. Org. Lett. 2020; 22: 9163
- 69 Cui Y, Bai D, Liu B, Chang J, Li X. Chem. Commun. 2020; 56: 15631
- 70 Jiang B, Jia J, Sun Y, Wang Y, Zeng J, Bu X, Shi L, Sun X, Yang X. Chem. Commun. 2020; 56: 13389
- 71 Hu X, Shao Y, Xie H, Chen X, Chen F, Ke Z, Jiang H, Zeng W. ACS Catal. 2020; 10: 8402
- 72 Zhao F, Gong X, Lu Y, Qiao J, Jia X, Ni H, Wu X, Zhang X. Org. Lett. 2021; 23: 727
- 73 Liu Z, Hu X, Yang C, Xie H, Jiang H, Zeng W. Adv. Synth. Catal. 2021; 363: 1672
- 74 Ni S, Hribersek M, Baddigam SK, Ingner FJ, Orthaber A, Gates PJ, Pilarski LT. Angew. Chem. Int. Ed. 2021; 60: 6660
- 75 Hu X, Tan Z, Liu Z, Chen F, Jiang H, Zeng W. Org. Chem. Front. 2021; 8: 983
- 76 Yu H, Zhao H, Xu X, Zhang X, Yu Z, Li L, Wang P, Shi Q, Xu L. Asian J. Org. Chem. 2021; 10: 879
- 77 Zhao F, Qiao J, Lu Y, Zhang X, Dai L, Gong X, Mao H, Lu S, Wu X, Liu S. Org. Lett. 2021; 23: 5766
- 78 Tang J, Tang Y, Wang X, Wang Y, Huang X, Xu S, Li Y. Org. Chem. Front. 2021; 8: 3809
- 79 Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Org. Lett. 2021; 23: 4406
- 80 Nunewar S, Kumar S, Pandhare H, Nanduri S, Kanchupalli V. Org. Lett. 2021; 23: 4233
- 81 Chan W.-W, Lo S.-F, Zhou Z, Yu W.-Y. J. Am. Chem. Soc. 2012; 134: 13565
- 82 Potter TJ, Kamber DN, Mercado BQ, Ellman JA. ACS Catal. 2017; 7: 150
- 83 Li L, Brennessel WW, Jones WD. J. Am. Chem. Soc. 2008; 130: 12414
- 84 Zhou T, Li B, Wang B. Chem. Commun. 2017; 53: 6343
- 85 Lv J, Wang B, Yuan K, Wang Y, Jia Y. Org. Lett. 2017; 19: 3664
- 86 Maity S, Karmakar U, Samanta R. Chem. Commun. 2017; 53: 12197
- 87 Chen X, Zheng G, Li Y, Song G, Li X. Org. Lett. 2017; 19: 6184
- 88 Bettadapur KR, Kapanaiah R, Lanke V, Prabhu KR. J. Org. Chem. 2018; 83: 1810
- 89 Biswas A, Samanta R. Eur. J. Org. Chem. 2018; 2018: 1426
- 90 Okada T, Sakai A, Hinoue T, Satoh T, Hayashi Y, Kawauchi S, Chandrababunaidu K, Miura M. J. Org. Chem. 2018; 83: 5639
- 91 Kona CN, Nishii Y, Miura M. Org. Lett. 2018; 20: 4898
- 92 Sherikar MS, Kapanaiah R, Lanke V, Prabhu KR. Chem. Commun. 2018; 54: 11200
- 93 Pradhan S, De P B, Punniyamurthy T. Org. Lett. 2019; 21: 9898
- 94 Biswas A, Bera S, Poddar P, Dhara D, Samanta R. Chem. Commun. 2020; 56: 1440
- 95 Pradhan S, Mishra M, De P B, Banerjee S, Punniyamurthy T. Org. Lett. 2020; 22: 1720
- 96 Sherikar MS, Devarajappa R, Prabhu KR. J. Org. Chem. 2020; 85: 5516
- 97 Pan C, Huang G, Shan Y, Li Y, Yu J.-T. Org. Biomol. Chem. 2020; 18: 3038
- 98 Tang S.-B, Fu X.-P, Wu G.-R, Zhang L.-L, Deng K.-Z, Yang J.-Y, Xia C.-C, Ji Y.-F. Org. Biomol. Chem. 2020; 18: 7922
- 99 Liu Y.-Z, Zeng Y.-F, Shu B, Zheng Y.-C, Xiao L, Chen S.-Y, Song J.-L, Zhang X, Zhang S.-S. Org. Chem. Front. 2022; 9: 4287
- 100 Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 101 Wu F, Xiao L, Xie H, Chen S.-Y, Song J.-L, Zheng Y.-C, Liu Y.-Z, Zhang S.-S. Org. Biomol. Chem. 2022; 20: 5055
- 102 Zhang Q, Li Q, Wang C. RSC Adv. 2021; 11: 13030
- 103 Xu L, Zhang C, He Y, Tan L, Ma D. Angew. Chem. Int. Ed. 2016; 55: 321
- 104 Guo L, Chen Y, Zhang R, Peng Q, Xu L, Pan X. Chem. Asian J. 2017; 12: 289
- 105 Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 1504
- 106 Han X, Yuan Y, Shi Z. J. Org. Chem. 2019; 84: 12764
- 107 Sheng Y, Gao Y, Duan B, Lv M, Chen Y, Yang M, Zhou J, Liang G, Song Z. Adv. Synth. Catal. 2022; 364: 307