Synthesis 2023; 55(20): 3272-3280
DOI: 10.1055/s-0042-1751976
paper

Green Synthesis of Five-Membered Hetarene N-Oxides: A Designed Approach to the Synthesis of Substituted Chromeno[3,4-c]pyrrole-2-oxides

Abdolali Alizadeh
,
Azar Rostampoor
,
Hamidreza Hasanpour
We are grateful to the Research Council of Tarbiat Modares University for support of this work.


Abstract

An efficient and chemoselective synthesis of biologically valuable chromeno[3,4-c]pyrrole 2-oxides containing one chiral stereocenter is described. In this method, by using a sequential nucleophilic addition reaction involving coumarins (α,β-unsaturated coumarins or 3-acetylcoumarins), activated acetylenic compounds, triphenylphosphine as a catalyst, and hydroxylammonium chloride (HAC) as an NO source, substituted chromeno[3,4-c]pyrrole 2-oxides were prepared with excellent efficiency. Readily available starting materials, absence of a metal catalyst, green and mild conditions, chemoselectivity, easy purification (the products can be purified by simple filtration and washing with EtOH), and synthetically useful yields are some highlighted advantages of this unprecedented transformation.

Supporting Information



Publication History

Received: 30 January 2023

Accepted after revision: 07 June 2023

Article published online:
21 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Smith JM, Dixon JA, deGruyter JN, Baran PS. J. Med. Chem. 2019; 62: 2256
    • 1b Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
    • 1c Pathania S, Rawal RK. Eur. J. Med. Chem. 2018; 157: 503
    • 1d Bunz UH. F, Freudenberg J. Acc. Chem. Res. 2019; 52: 1575
    • 2a Fershtat LL, Teslenko FE. Synthesis 2021; 53: 3673
    • 2b Lopes SM, Cardoso AL, Lemos A, Pinho e Melo TM. Chem. Rev. 2018; 118: 11324
    • 2c Tanimoto H, Shitaoka T, Yokoyama K, Morimoto T, Nishiyama Y, Kakiuchi K. J. Org. Chem. 2016; 81: 8722
    • 2d Cardoso AL, Lopes SM, Grosso C, Pineiro M, Lemos A, Pinho e Melo TM. J. Chem. Educ. 2021; 98: 2661
    • 3a Morozov DA, Kirilyuk IA, Komarov DA, Goti A, Bagryanskaya IY, Kuratieva NV, Grigor’ev IA. J. Org. Chem. 2012; 77: 10688
    • 3b Demory E, Farran D, Baptiste B, Chavant PY, Blandin V. J. Org. Chem. 2012; 77: 7901
    • 3c Zhurko IF, Dobrynin S, Gorodetskii AA, Glazachev YI, Rybalova TV, Chernyak EI, Asanbaeva N, Bagryanskaya EG, Kirilyuk IA. Molecules 2020; 25: 845
    • 3d Voinov MA, Shevelev TG, Rybalova TV, Gatilov YV, Pervukhina NV, Burdukov AB, Grigor’ev IA. Organometallics 2007; 26: 1607
    • 3e Desvergnes S, Py S, Vallée Y. J. Org. Chem. 2005; 70: 1459
    • 3f Nunes SC, Lopes SM, Gomes CS, Lemos A, Pais AA, Pinho e Melo TM. J. Org. Chem. 2014; 79: 10456
    • 3g Dobrynin SA, Glazachev YI, Gatilov YV, Chernyak EI, Salnikov GE, Kirilyuk IA. J. Org. Chem. 2018; 83: 5392
    • 4a Takenaka N, Sarangthem RS, Captain B. Angew. Chem. Int. Ed. 2008; 47: 9708
    • 4b Nicholas GM, Blunt JW, Munro MH. J. Nat. Prod. 2001; 64: 341
    • 5a García Ruano JL, Fraile A, Martín Castro AM, Martin MR. J. Org. Chem. 2005; 70: 8825
    • 5b Astolfi P, Marini M, Stipa P. J. Org. Chem. 2007; 72: 8677
    • 5c Saravanan S, Azath IA, Muthusubramanian S. J. Org. Chem. 2008; 73: 2323
    • 5d Wang F, Sarotti AM, Jiang G, Huguet-Tapia JC, Zheng SL, Wu X, Cao S. Org. Lett. 2020; 22: 4408
  • 6 Lewandowski M, Gwozdzinski K. Int. J. Mol. Sci. 2017; 18: 2490
    • 7a Barriga G, Olea-Azar C, Norambuena E, Castro A, Porcal W, Gerpe A, Gonzalez M, Cerecetto H. Bioorg. Med. Chem. 2010; 18: 795
    • 7b Rosselin M, Poeggeler B, Durand G. Curr. Top. Med. Chem. 2017; 17: 2006
    • 7c Floyd RA, Kopke RD, Choi CH, Foster SB, Doblas S, Towner RA. Free Radical Biol. Med. 2008; 45: 1361
    • 7d Porcal W, Hernández P, González M, Ferreira A, Olea-Azar C, Cerecetto H, Castro A. J. Med. Chem. 2008; 51: 6150
    • 9a Zuo L, Chen YR, Reyes LA, Lee HL, Chen CL, Villamena FA, Zweier JL. Pharmacol. Exp. Ther. 2009; 329: 515
    • 9b Saito K, Sail D, Yamamoto K, Matsumoto S, Blackman B, Kishimoto S, Krishna MC. Free Radical Biol. Med. 2019; 131: 18
    • 9c Frejaville C, Karoui H, Tuccio B, Moigne FL, Culcasi M, Pietri S, Tordo P. J. Med. Chem. 1995; 38: 258
  • 10 Foster RT, Ranguelova K. J. Am. Soc. Brew. Chem. 2021; 79: 249
  • 11 Han X, Kong L, Feng J, Li X. Chem. Commun. 2020; 56: 5528
  • 12 Cui XF, Huang GS. Org. Biomol. Chem. 2020; 18: 4014
  • 13 Chen F, Huang X, Li X, Shen T, Zou M, Jiao N. Angew. Chem. Int. Ed. 2014; 126: 10663
    • 14a Senadi GC, Wang JQ, Gore BS, Wang JJ. Adv. Synth. Catal. 2017; 359: 2747
    • 14b Unnava R, Deka MJ, Saikia AK. Asian J. Org. Chem. 2016; 5: 528
    • 14c Yuan B, Zhang F, Li Z, Yang S, Yan R. Org. Lett. 2016; 18: 5928
  • 15 Akulov AA, Varaksin MV, Charushin VN, Chupakhin ON. ACS Omega 2019; 4: 825
    • 16a Yeh JY, Coumar MS, Horng JT, Shiao HY, Kuo FM, Lee HL, Chen IC, Chang CW, Tang WF, Tseng SN, Chen CJ, Shih SR, Hsu JT. A, Liao CC, Chao YS, Hsieh HP. J. Med. Chem. 2010; 53: 1519
    • 16b Liu BY, Zhang C, Zeng KW, Li J, Guo XY, Zhao M, Tu PF, Jiang Y. J. Nat. Prod. 2018; 81: 22
    • 16c Donnelly AC, Mays JR, Burlison JA, Nelson JT, Vielhauer G, Holzbeierlein J, Blagg BS. J. Org. Chem. 2008; 73: 8901
    • 17a Alizadeh A, Rostampoor A. ChemistrySelect 2021; 6: 12960
    • 17b Alizadeh A, Rostampoor A. ChemistrySelect 2022; 7: e202200299
    • 17c Alizadeh A, Farajpour B, Rezaiyehraad R, Khanpour M. ChemistrySelect 2021; 6: 11925
    • 19a Rao VR, Reddy VR. J. Heterocycl. Chem. 2007; 44: 707
    • 19b Patel JC, Dholariya HR, Patel KS, Patel KD. Appl. Organomet. Chem. 2012; 26: 604
    • 19c Khode S, Maddi V, Aragade P, Palkar M, Ronad PK, Mamledesai S, Satyanarayana D. Eur. J. Med. Chem. 2009; 44: 1682
  • 20 Pardin C, Pelletier JN, Lubell WD, Keillor JW. J. Org. Chem. 2008; 73: 5766
  • 21 Alizadeh A, Mohammadi R, Bayat F, Zhu LG. Tetrahedron 2018; 74: 2085
  • 22 Alizadeh A, Jamal P. Synlett 2018; 29: 1107
  • 23 Hayatgheybi S, Khosravi H, Zahedian Tejeneki H, Rominger F, Bijanzadeh HR, Balalaie S. Org. Lett. 2021; 23: 3524