Planta Med 2002; 68(1): 16-19
DOI: 10.1055/s-2002-20050
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Antioxidant Effects of 1,5-Anhydro-D-fructose, a New Natural Sugar, in vitro

Kazuyo  Yamaji1 , Krishna Pada Sarker1 , Ikuro  Maruyama1 , Susumu  Hizukuri2
  • 1Department of Laboratory and Molecular Medicine, Faculty of Medicine, Kagoshima University, Kagoshima City, Japan
  • 2Kagoshima University, Kagoshima City, Japan
Further Information

Publication History

December 28, 2000

May 24, 2001

Publication Date:
31 January 2002 (online)

Abstract

The antioxidant effects of 1,5-anhydro-D-fructose (1,5-AF), a unique anhydrohexulose, were studied in 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution, in human cells along with lipid peroxidation of low-density lipoprotein (LDL). We have confirmed that 1,5-AF scavenges DPPH radicals directly in solution and inhibits the formation of hydrogen peroxide and superoxide anion, typical reactive oxygen species (ROS), induced by phorbol myristate acetate (PMA) in a dose-dependent manner in THP-1 cells. We also observed the dose-dependent antioxidant effects of 1,5-AF on copper-mediated LDL oxidation. These findings suggest that 1,5-AF might play a role in reducing the risk of atherosclerosis and may help prevent coronary heart disease.

References

  • 1 Halliwell B, Gutteridge J MC. Role of free radicals and catalytic metal ions in human disease.  Methods in Enzymology. 1990;  186 1-85
  • 2 Jacob R A, Burri B J. Oxidative damage and defense.  The American Journal of Clinical Nutrition. 1996;  63 985S-90S
  • 3 Witztum J L, Steinberg D. Role of oxidized low-density lipoprotein in atherogenesis.  The Journal of Clinical Investigation. 1991;  88 (6) 1785-92
  • 4 Yu S, Kenne L, Pederson M. Alpha-1,4-glucan lyase, a new class of starch/glycogen degrading enzyme. I. Efficient purification and characterization from red seaweeds.  Biochimica et Biophysica Acta. 1993;  1156 313-20
  • 5 Kametani S, Mizuno H, Shiga Y, Akanuma H. NMR of all-carbon-13 sugars : an application in development of an analytical method for a novel natural sugar, 1,5-anhydrofructose.  Journal of Biochemistry. 1996;  119 180-5
  • 6 Baute M A, Baute R, Deffieux G. Fungal enzymic activity degrading 1,4-α-glucans to 1,5-D-anhydrofructose.  Phytochemistry. 1988;  27 3401-3
  • 7 Yamanouchi T, Minoda S, Yabuuchi M, Akanuma Y, Akanuma H, Miyashita H, Akaoka I. Plasma 1,5-anhydro-D-glucitol as new clinical marker of glycemic control in NIDDM patients.  Diabetes. 1989;  38 723-9
  • 8 Kametani S, Shiga Y, Akanuma H. Hepatic production of 1,5-anhydrofructose and 1,5-anhydroglucitol in rat by the third glycogenolytic pathway.  European Journal of Biochemistry. 1996;  242 832-8
  • 9 Marsden S B. Antioxidant determinations by the use of a stable free radical.  Nature. 1958;  181 1199-200
  • 10 Yoshinaga K, Fujisue M, Abe J, Hanashiro I, Takeda Y, Muroya K, Hizukuri S. Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme.  Biochimica et Biophysica Acta. 1999;  1472 (3) 447-54
  • 11 Kogure K, Goto S, Abe K, Ohiwa C, Akasu M, Terada H. Potent antiperoxidation activity of the bisbenzylisoquinoline alkaloid cepharanthine : the amine moiety is responsible for its pH-dependent radical scavenge activity.  Biochimica et Biophysica Acta. 1999;  1426 133-42
  • 12 Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader.  Journal of Immunological Methods. 1981;  46 211-26
  • 13 Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides.  The Journal of Biological Chemistry. 1994;  27 15 274-9
  • 14 Suzuki M, Kametani S, Uchida K, Akanuma H. Production of 1,5-anhydroglucitol from 1,5-anhydrofructose in erythroleukemia cells.  European Journal of Biochemistry. 1996;  240 23-9
  • 15 Suzuki M, Akanuma H, Akanuma Y. Transport of 1,5-anhydro-D-glucitol across plasma membranes in rat hepatoma cells.  Journal of Biochemistry. 1988;  104 956-9
  • 16 Lynch S M, Frei B. Reduction of copper, but not iron, by human low-density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL.  The Journal of Biological Chemistry. 1995;  270 (10) 5158-63
  • 17 Taguchi T, Haruna M, Okuda J. Effects of 1,5-anhydro-D-fructose on selected glucose-metabolizing enzymes.  Biotechnology and Applied Biochemistry. 1993;  18 275-83
  • 18 Yu S, Olsen C E, Marcussen J. Methods for the assay of 1,5-anhydro-D-fructose and α-1, 4-glucan lyase.  Carbohydrate Research. 1998;  305 73-82
  • 19 Ahren B, Holst J J, Yu S. 1,5-Anhydro-D-fructose increases glucose tolerance by increasing glucagon-like peptide-1 and insulin in mice.  European Journal of Pharmacology. 2000;  397 219-25

Kazuyo Yamaji

Department of Laboratory and Molecular Medicine

Faculty of Medicine

Kagoshima University, 8-35-1

Sakuragaoka

Kagoshima City, 890-8520

Japan

Phone: +81-99-275-5437

Fax: +81-99-275-2629

Email: yamaji@m3.kufm.kagoshima-u.ac.jp

    >