Horm Metab Res 2003; 35(10): 611-616
DOI: 10.1055/s-2003-43509
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Recombinant Glucagon-like Peptide-1 (7-36 amide) Lowers Fasting Serum Glucose in a Broad Spectrum of Patients with Type 2 Diabetes

M.  R.  Ehlers1 , L.  J.  Klaff2 , D.  A.  D’Alessio3, 4 , R.  Brazg2 , H.  D.  Kay1 , R.  E.  Harley1 , A.  L.  Mathisen1 , R.  Schneider1
  • 1Restoragen, Inc., Lincoln, Nebraska
  • 2Rainier Clinical Research Center, Renton, Washington
  • 3Department of Medicine, University of Washington, Seattle, Washington
  • 4Department of Medicine, University of Cincinnati, Cincinnati, Ohio
Further Information

Publication History

Received 9 January 2003

Accepted after revision 7 May 2003

Publication Date:
07 November 2003 (online)

Abstract

Aims: To evaluate the safety and efficacy of various doses of recombinant glucagon-like peptide-1 (7-36) amide (rGLP-1) administered subcutaneously (s. c.) via bolus injection or continuous infusion to lower fasting serum glucose (FSG) levels in subjects with type 2 diabetes treated by diet, hypoglycemic drugs, or insulin injection.

Methods: rGLP-1 was administered s. c. to 40 type 2 diabetics currently treated by diet, sulfonylurea (SU), metformin, or insulin in a double-blind, placebo-controlled, cross-over trial; preexisting treatments were continued during the study. In the bolus injection protocol, 32 subjects (8 from each of the 4 treatment groups) received 0.0, 0.5, 1.0, and 1.5 nmol rGLP-1/kg per injection (two injections, two hours apart, beginning one hour after the evening meal) in a randomized order on separate days. In the continuous s. c. infusion protocol, 40 subjects received rGLP-1 at 0.0, 1.5, 2.5, 3.5, and 4.5 pmol/kg/min for 10 - 12 hours overnight starting one hour after the evening meal. Fasting bloods were taken the morning after for glucose, insulin, and glucagon measurements.

Results: In the diet, SU, and metformin cohorts, bolus rGLP-1 injections produced modest reductions in mean FSG levels, averaging 17.4 mg/dl (7.3 - 27.5; 95 % CI) at the highest dose (p < 0.001 vs. placebo). Reductions in FSG levels were greater by continuous infusion at up to 30.3 mg/dl (18.8 - 41.8; 95 % CI; p < 0.001 vs. placebo). The greatest reduction in mean FSG occurred in the SU cohort (up to 43.9 mg/dl, 24.7 - 63.1; 95 % CI; p < 0.001). rGLP-1 infusions resulted in significant increases in fasting plasma insulin and decreases in fasting plasma glucagon levels. There were no serious adverse events; GI-related symptoms were dose-related and more commonly associated with injections.

Conclusions: rGLP-1 (7-36) amide dose-dependently lowered FSG in a broad spectrum of type 2 diabetics when added to their existing treatment. Subcutaneous infusion was more effective than injection, and the combination with SU was more effective than with metformin.

References

  • 1 King H, Aubert R E, Hdrman W H. Global burden of diabetes, 1995 - 2025.  Diabetes Care. 1998;  21 1414-1431
  • 2 Jovanovic L, Gondos B. Type 2 diabetes: the epidemic of the new millennium.  Ann Clin Lab Sci. 1999;  29 33-42
  • 3 DeFronzo R A. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes.  Diabetes Reviews. 1997;  3 177-269
  • 4 Weyer C, Tataranni P A, Bogardus C, Pratley R E. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development.  Diabetes Care. 2000;  24 89-94
  • 5 Kahn S E. The importance of β-cell failure in the development and progression of type 2 diabetes.  J Clin Endocrinol Metab. 2001;  86 4047-4058
  • 6 Knudsen L B, Agerso H, Bjenning C, Bregenholt S, Carr R D, Godtfredsen C, Holst J J, Huusfeldt P O, Larsen M O, Larsen P J, Nielsen P F, Ribel U, Rolin B, Romer J, Sturis J, Wilken M, Kristensen P. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes: selection of NN2211 for clinical development.  Drugs Future. 2001;  26 677-685
  • 7 Kieffer T J, Hussain M A, Habener J F. Glucagon and glucagon-like peptide production and degradation. In: Jefferson LS, Cherrington AD, Goodman HM (eds) Handbook of Physiology, section 7: The Endocrine Pancreas, vol. II: The Endocrine Pancreas and Regulation of Metabolism. Oxford; Oxford University Press 2001: 197-265
  • 8 Habener J F. Glucagon-like peptide-1 agonist stimulation of β-cell growth and differentiation.  Curr Opin Endocrinol Diab. 2001;  8 74-81
  • 9 D’Alessio D A, Kahn S E, Leusner C R, Ensinck J W. Glucagon-like peptide 1 enhances tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal.  J Clin Invest. 1994;  93 2263-2266
  • 10 Meneilly G S, McIntosh C HS, Pederson R A, Habener J F, Gingerich R, Egan J M, Finegood D T, Elahi D. Effect of glucagon-like peptide 1 on non-insulin-mediated glucose uptake in the elderly patient with diabetes.  Diabetes Care. 2001;  24 1951-1956
  • 11 Deacon C F, Nauck M A, Toft-Nielsen M, Pridal L, Willms B, Holst J J. Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects.  Diabetes. 1995;  44 1126-1131
  • 12 Toft-Nielsen M, Madsbad S, Holst J J. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients.  Diabetes Care. 1999;  22 1137-1143
  • 13 Zander M, Madsbad S, Madsen J L, Holst J J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study.  Lancet. 2002;  359 824-830
  • 14 Nauck M A, Wollschläger D, Werner J, Holst J J, Ørskov C, Creutzfeldt W, Willms B. Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7-36 amide]) in patients with NIDDM.  Diabetologia. 1996;  39 1546-1553
  • 15 Holst J J. Treatment of type 2 diabetes mellitus based on glucagon-like peptide-1.  Exp Opin Invest Drugs. 1999;  8 1409-1415
  • 16 Gutniak M K, Juntti-Berggren L, Hellström P M, Guenifi A, Holst J J, Efendic S. Glucagon-like peptide 1 enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas.  Diabetes Care. 1996;  19 857-863
  • 17 Ritzel R, Ørskov C, Holst J J, Nauck M A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response relationships.  Diabetologia. 1995;  38 720-725
  • 18 Larsen J, Hylleberg B, Ng K, Damsbo P. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulfonylurea treatment.  Diabetes Care. 2001;  24 1416-1421
  • 19 Ørskov C, Poulsen S S, Moller M, Holst J J. Glucagon-like peptide 1 receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide 1.  Diabetes. 1996;  45 832-835
  • 20 Toft-Nielsen M, Madsbad S, Holst J J. Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglycemia.  Diabetologia. 1998;  41 1180-1186
  • 21 Edwards C MB, Todd J F, Ghatei M A, Bloom S R. Subcutaneous glucagon-like peptide-1 (7-36) amide is insulinotropic and can cause hypoglycemia in fasted healthy subjects.  Clin Science. 1998;  96 719-724

M. R. Ehlers, M. D., Ph. D.

Pacific Biometrics, Inc.

220 West Harrison Street · Seattle · WA 98119 · USA ·

Email: marioe@pacbio.com

Fax: + 1 (206) 298 98 38

    >