Horm Metab Res 2004; 36(5): 286-290
DOI: 10.1055/s-2004-825664
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Influence of Chronically Altered Thyroid Status on the Activity of Liver Mitochondrial Glycerol-3-phosphate Dehydrogenase in Female Inbred Lewis Rats

H.  Rauchová1, 2 , G.  Zacharová1 , T.  Soukup1
  • 1Institute of Physiology, Academy of Sciences of the Czech Republic
  • 2Centre for Experimental Cardiovascular Research, Prague, Czech Republic
Further Information

Publication History

Received 22 July 2003

Accepted after Revision 2 December 2003

Publication Date:
24 May 2004 (online)

Abstract

The activity of liver mitochondrial flavoprotein-dependent glycerol-3-phosphate dehydrogenase (GPDH) is considered a reliable marker of thyroid status in acute and short-lasting experiments. The aim of this study was to ascertain whether GPDH activity could also be used as an index of thyroid status during chronic experiments over several months. We therefore analyzed GPDH activity in liver mitochondria of female inbred Lewis rats with thyroid status altered for 2 to 12 months. Hyperthyroid state was maintained by triiodothyronine (T3) or thyroxine (T4) administration, while methimazole was employed for inducing hypothyroidism. We found a seven- and three-fold increase of GPDH activity in female rats after T3 or T4 administration, respectively, compared to euthyroid females (8.9 ± 2.3 nmol/min/mg protein), whereas administration of methimazole reduced the enzyme activity almost to one-third of the euthyroid values. These changes were not significantly influenced by the duration of hyperthyroid or hypothyroid treatment. We conclude that the level of the rat liver GPDH activity could serve as a useful marker for evaluation of hyperthyroid and hypothyroid status in chronic long-lasting experiments on female inbred Lewis rats.

References

  • 1 Gong D W, Bi S, Weintraub B D, Reitman M. Rat mitochondrial glycerol-3-phosphate dehydrogenase gene: multiple promoters, high levels in brown adipose tissue, and tissue-specific regulation by thyroid hormone.  DNA Cell Biol. 1998;  17 301-309
  • 2 Rauchová H, Battino M, Fato R, Lenaz G, Drahota Z. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria.  J Bioenerg Biomembr. 1992;  24 235-241
  • 3 Lee Y P, Lardy H A. Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat.  J Biol Chem. 1965;  240 1427-1436
  • 4 Dümmler K, Müller S, Seitz H J. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.  Biochem J. 1996;  317 913-918
  • 5 Taylor V J, Ragan C I. The induction of mitochondrial L-3-glycerophosphate dehydrogenase by thyroid hormone.  Biochim Biophys Acta. 1986;  851 49-56
  • 6 Dey S S, Medda A K. Effect of triiodothyronine and thyroxine on mitochondrial alpha-glycerophosphate dehydrogenase activity and mitochondrial protein content of liver, muscle and brain of toad, Bufo melanostictus.  Horm Metab Res. 1990;  22 418-422
  • 7 Sellinger O Z, Lee K L, Fesler K W. The induction of mitochondrial α-glycerophosphate dehydrogenase by thyroid hormone: effects of adrenalectomy, thyroidectomy and cortisone administration.  Biochim Biophys Acta. 1966;  124 289-294
  • 8 Costante G, Grupi D, Catalfamo R, Trimarchi F. Stimulation of liver mitochondrial alpha-glycerophosphate dehydrogenase activity by L-thyroxine in thyroidectomized rats: comparison with the suppression of pituitary TSH secretion.  J Endocrinol Invest. 1990;  13 61-64
  • 9 Müller S, Seitz H J. Cloning of a cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase from rat liver and its regulation by thyroid hormones.  Proc Natl Acad Sci USA. 1994;  91 10 582-10 585
  • 10 Lanni A, Cimmino M, Moreno M, Delli Gatti A, Ginestra A, Goglia F. Relationship between dose, mode of administration and effects of triiodothyronine on two hepatic responsive enzymes.  Horm Metab Res. 1995;  27 314-317
  • 11 Lotková H, Rauchová H, Drahota Z. Activation of mitochondrial glycerophosphate cytochrome c reductase in regenerating rat liver by triiodothyronine.  Physiol Res. 2001;  50 333-336
  • 12 Wilson E J, McMurray W C. Regulation of malic enzyme and mitochondrial α-glycerophosphate dehydrogenase by thyroid hormones, insulin, and glucocorticoids in cultured hepatocytes.  J Biol Chem. 1981;  256 11 657-11 662
  • 13 Pellizas C G, Coleoni A H, Cabanillas A M, Masini-Repiso A M, Castamagna M E. Response of triiodothyronine-dependent enzyme activities to insulin-like growth factor I and growth hormone in cultured rat hepatocytes.  Eur J Endocrinol. 1996;  134 215-220
  • 14 Kneer N, Lardy H. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes.  Arch Biochem Biophys. 2000;  375 145-153
  • 15 Okamura K, Taurog A, Krulich L. Hypothyroidism in several iodine-deficient rats.  Endocrinology. 1981;  109 464-468
  • 16 Coleoni A H, Cherubini O. Sex-related differences in the activity of liver mitochondrial alpha-glycerophosphate dehydrogenase in the rat.  Acta Physiol Pharmacol Latinoam. 1989;  39 245-253
  • 17 Soukup T, Jirmanová I. Regulation of myosin expression in developing and regenerating extrafusal and intrafusal muscle fibres with special emphasis on the role of thyroid hormones.  Physiol Res. 2000;  49 617-633
  • 18 Zacharˇová G, Mrácˇková K, Jirmanová I, Soukup T. Stereological evaluation of the soleus muscle isografted into fast extensor digitorum longus (EDL) muscle in rats with different thyroid status.  Gen Physiol Biophys. 1999;  18 (Suppl.1) 84-86
  • 19 Soukup T, Zacharˇová G, Smerdu V. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats.  Acta Histochem. 2002;  104 399-405
  • 20 Jirmanová I, Soukup T. Critical period in muscle spindle regeneration in grafts of developing rat muscles.  Anat Embryol. 1995;  192 283-291
  • 21 Johnson D, Lardy H. Isolation of liver or kidney mitochondria. In: Estabrook RW, Pullman ME (eds) Methods in Enzymology 10, Oxidation and Phosphorylation. New York, London; Academic Press 1967: 94-96
  • 22 Lowry O H, Rosebrough J N, Farr A L, Randall R J. Protein measurement with the Folin-phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 23 Sottocasa G L, Kuylenstierna B, Ernster L, Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria.  J Cell Biol. 1967;  32 415-438
  • 24 Rauchová H, Kalous M, Drahota Z. The effect of phospholipase A2 on mitochondrial glycerol-3-phosphate oxidation.  Physiol Res. 1993;  42 319-322
  • 25 Soukup T, Zacharˇová G, Smerdu V, Jirmanová I. Body, heart, thyroid gland and skeletal muscle weight changes in rats with altered thyroid status.  Physiol Res. 2001;  50 619-626
  • 26 Shapiro S, Percin C J. Thyroid hormone induction of α-glycerophosphate dehydrogenase in rats of different ages.  Endocrinology. 1966;  79 1075-1078
  • 27 Barletta A, Liverini G, Goglia F, Di Meo S, De Leo T. Thyroid state and mitochondrial population during maturation and ageing.  J Endocrinol Invest. 1980;  3 293-296
  • 28 Sawada K, Hummel B CW, Walfish P G. Age-related changes in rat hepatic and renal thyroid hormone-sensitive enzymes - different responses to acute and chronic L-triiodothyronine stimulation.  Mech Ageing Dev. 1988;  42 229-237
  • 29 Mooradian A D, Deebaj L, Wong N C. Age-related alterations in the response of hepatic lipogenic enzymes to altered thyroid states in the rat.  J Endocrinol. 1991;  128 79-84
  • 30 Schwartz H L, Forciea M A, Mariash C N, Oppenheimer J H. Age-related reduction in response of hepatic enzymes to 3,5,3'-triiodothyronine administration.  Endocrinology. 1979;  105 41-46
  • 31 Hansen R J, Jungermann K. Sex differences in the control of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Interaction of estrogen, testosterone and insulin in the regulation of enzyme levels in vivo and in cultured hepatocytes.  Biol Chem Hoppe Seyler. 1987;  368 955-962
  • 32 Pankiewicz A, Sledzinski T, Nogalska A, Swierczynski J. Tissue specific, sex and age-related differences in the 6-phosphogluconate dehydrogenase gene expression.  Int J Biochem Cell Biol. 2003;  35 235-245
  • 33 Oppenheimer J H. Thyroid hormone action at the cellular level.  Science. 1979;  203 971-979
  • 34 Chin W W, Yen P M. Molecular mechanisms of nuclear thyroid hormone action. In: Braveman LE (ed) Contemporary Endocrinology: Diseases of the Thyroid. Totowa; Humana Press 1997: 1-15
  • 35 Khawaja Y, Dobnig H, Shapiro E, Surks M I. Increase in hepatic mitochondrial α-glycerophosphate dehydrogenase activity after surgical stress in hyperthyroid rats.  Endocrinology. 1990;  127 387-393

Dr. T. Soukup

Institute of Physiology AS CR

Vídenská 1083 · 142 20 Prague · Czech Republic ·

Phone: +420(2)4106-2544

Fax: +420(2)4106-24 88

Email: tsoukup@biomed.cas.cz

    >