Der Nuklearmediziner 2008; 31(1): 25-28
DOI: 10.1055/s-2008-1004616
PET und Strahlentherapie

© Georg Thieme Verlag Stuttgart · New York

Therapiemonitoring mit 18F-FDG-PET / CT

Therapy Monitoring with 18F-FDG-PET / CTC. Pöttgen1 , A. Bockisch2
  • 1Klinik für Strahlentherapie, Universitätsklinikum Essen
  • 2Klinik für Nuklearmedizin, Universitätsklinikum Essen
Further Information

Publication History

Publication Date:
28 February 2008 (online)

Zusammenfassung

Die funktionelle Bildgebung mittels 18F-FDG-PET bzw. PET / CT liefert zusätzliche Informationen über das Tumoransprechen während und nach einer zytostatischen Therapie (Chemo- und Strahlentherapie). Semiquantitative Auswertungen des FDG-Uptakes durch SUV-Messungen erlauben die Prädiktion histopathologischer Remissionsergebnisse mit einer Sensitivität und Spezifität zwischen 65-85 %. Gleichzeitig werden prognostische Vorteile für Responder erkennbar, die bei SUV-Abnahmen von > 40-60 % gegenüber der Ausgangsuntersuchung bessere krankheitsfreie und Gesamtüberlebensraten zeigen. Bei einigen Tumorentitäten ist es mittlerweile gelungen, eine frühe Responseprädiktion (schon nach dem 1. Chemo- / Chemoradiotherapie-Zyklus) durchzuführen, was eine Adaptation der Therapie ermöglicht. An die Durchführung der Untersuchungen im Hinblick auf Standardisierung und Vergleichbarkeit sind, ebenso wie an die Interpretation, hohe methodische Anforderungen zu stellen. Der optimale Zeitpunkt von Verlaufsscans während und nach Strahlentherapie ist nicht geklärt und macht weitere prospektive Interventionsstudien notwendig.

Abstract

Functional imaging using 18F-FDG-PET provides the clinician with additional information about the tumour response during and / or after induction chemo- / chemo-radiotherapy. Semiquantitative analysis with SUV measurements allows prediction of histopathologic remission with sensitivity and specificity of 65-85 %. In addition, SUV reductions by > 40-60 % in relation to the baseline scan indicate better disease-free and overall survival rates. Successful response prediction has been shown in some tumour entities early during or after the first chemo- / chemo-radiotherapy cycle. This allows an early adaptation of therapeutic strategies including avoidance of invasive procedures or surgical tumour removal. Standardization of the application and performance of PET-scans is of crucial importance with respect to inter-institutional comparisons and diagnostic validity. The optimal time-point of sequential investigations during / after radiotherapy remains unclear and warrants further interventional studies.

Literatur

  • 1 Belkacemi Y, Tsoutsou P, Magne N, Castadot P, Azria D. Metabolic functional imaging for tumor radiosensitivity monitoring.  Crit Rev Oncol Hematol. 2007;  62 227-239
  • 2 Capirci C, Rampin L, Erba P A. et al . Sequential FDG-PET / CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy.  Eur J Nucl Med Mol Imaging. 2007;  34 1583-1593
  • 3 Cheson B D, Pfistner B, Juweid M E. et al . Revised response criteria for malignant lymphoma.  J Clin Oncol. 2007;  25 579-586
  • 4 Daisne J F, Duprez T, Weynand B. et al . Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG-PET and validation with surgical specimen.  Radiology. 2004;  233 93-100
  • 5 de Geus-Oei L F, van der Heijden H F, Corstens F H, Oyen W J. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer: a systematic review.  Cancer. 2007;  110 1654-1664
  • 6 Dose Schwarz J, Bader M, Jenicke L, Hemminger G, Janicke F, Avril N. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG-PET.  J Nucl Med. 2005;  46 1144-1150
  • 7 Erasmus J J, Munden R F. The role of integrated computed tomography positron-emission tomography in esophageal cancer: staging and assessment of therapeutic response.  Semin Radiat Oncol. 2007;  17 29-37
  • 8 Green A J, Francis R J, Baig S, Begent R H. Semiautomatic volume of interest drawing for (18)F-FDG image analysis-method and preliminary results.  Eur J Nucl Med Mol Imaging. 2007;  ,  [epub ahead of print]
  • 9 Groves A M, Win T, Haim S B, Ell P J. Non-[18F]FDG-PET in clinical oncology.  Lancet Oncol. 2007;  8 822-830
  • 10 Juweid M E, Wiseman G A, Vose J M. et al . Response assessment of aggressive non-Hodgkin's lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography.  J Clin Oncol. 2005;  23 4652-4661
  • 11 Kong F M, Frey K A, Quint L E. et al . A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer.  J Clin Oncol. 2007;  25 3116-3123
  • 12 Kostakoglu L, Goldsmith S J. PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus.  J Nucl Med. 2004;  45 56-68
  • 13 Kumar R, Chauhan A, Kesav Vellimana A, Chawla M. Role of PET / PET-CT in the management of sarcomas.  Expert Rev Anticancer Ther. 2006;  6 1241-1250
  • 14 Nestle U, Kremp S, Grosu A L. Practical integration of [18F]-FDG-PET and PET / CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives.  Radiother Oncol. 2006;  81 209-225
  • 15 Nestle U, Kremp S, Schaefer-Schuler A. et al . Comparison of different methods for delineation of 18F-FDG-PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer.  J Nucl Med. 2005;  46 1342-1348
  • 16 Schinagl D A, Vogel W V, Hoffmann A L, van Dalen J A, Oyen W J, Kaanders J H. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.  Int J Radiat Oncol Biol Phys. 2007;  69 1282-1289
  • 17 Shankar L K, Hoffman J M, Bacharach S. et al . Consensus recommendations for the use of 18F-FDG-PET as an indicator of therapeutic response in patients in National Cancer Institute Trials.  J Nucl Med. 2006;  47 1059-1066
  • 18 Therasse P, Arbuck S G, Eisenhauer E A. et al . New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.  J Natl Cancer Inst. 2000;  92 205-216
  • 19 Weber W A, Figlin R. Monitoring cancer treatment with PET / CT: does it make a difference?.  J Nucl Med. 2007;  48 Suppl 1 36-44
  • 20 Weber W A, Petersen V, Schmidt B. et al . Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use.  J Clin Oncol. 2003;  21 2651-2657
  • 21 Weber W A, Wieder H. Monitoring chemotherapy and radiotherapy of solid tumors.  Eur J Nucl Med Mol Imaging. 2006;  33 Suppl 1 27-37
  • 22 Westerterp M, Pruim J, Oyen W. et al . Quantification of FDG-PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters.  Eur J Nucl Med Mol Imaging. 2007;  34 392-404
  • 23 Wieder H A, Brucher B L, Zimmermann F. et al . Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment.  J Clin Oncol. 2004;  22 900-908
  • 24 Young H, Baum R, Cremerius U. et . Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group.  Eur J Cancer. 1999;  35 1773-1782

Dr. C. Pöttgen

Klinik für Strahlentherapie Universitätsklinikum Essen

Hufelandstr. 55

45122 Essen

Phone: +49 / 2 01 / 7 23 23 21

Email: christoph.poettgen@uk-essen.de

    >