Drug Res (Stuttg) 2019; 69(08): 419-427
DOI: 10.1055/a-0850-6518
Review
© Georg Thieme Verlag KG Stuttgart · New York

Caveolins; An Assailant or An Ally of Various Cellular Disorders

Ritesh Kumar Srivastav
1   Faculty of Pharmacy, Kamla Nehru Institute of Management and Technology, Sultanpur, India
,
Tarique Mahmood Ansari
2   Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
,
Mahesh Prasad
1   Faculty of Pharmacy, Kamla Nehru Institute of Management and Technology, Sultanpur, India
,
Vishal Kumar Vishwakarma
3   Department of Pharmacology, R.R.S College of Pharmacy, Amethi, Uttar Pradesh, India
,
Paramdeep Bagga
2   Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
,
Farogh Ahsan
2   Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
› Author Affiliations
Further Information

Publication History

received 01 January 2019

accepted 01 February 2019

Publication Date:
18 February 2019 (online)

Abstract

Caveolae have impressive morphological highlights of the cytomembrane of mammalian cells which involve in wide diversity of cellular functions involving signaling pathways and cholesterol hastening. Caveolin proteins possess a ‘scaffolding’ domain which for caveolin-1 and caveolin-3 appear to act a dominant role in signal regulation through caveolae. Caveolin-1 is treated to be protein in the cytomembrane entrapped with caveolae in endothelial cells and vascular smooth muscle cells which diminish nitric oxide (NO) by fill up the calcium/calmodulin (Ca2+/CaM) confining point of endothelial nitric oxide synthase (eNOS), decrease NO generation produce endothelial dysfunction and atherosclerotic injury development. It is a cholesterol-binding layer protein associated with cell cholesterol transport and also shows cardioprotective action through ischemic preconditioning (IPC) in diabetic and postmenopausal rat heart. Additionally it is ensnared in the procedures of tumorigenesis, prostate disease, and inflammation. The present study in the paper is to explore the structural functionalities of caveolins and their contributory role in CVS disorders and various other diseases.

 
  • References

  • 1 Pilch PF, Meshulam T, Ding S. et al. Caveolae and lipid trafficking in adipocytes. Clin Lipidol 2011; 6: 49-58
  • 2 Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1955; 1: 445-458
  • 3 Palade GE. Fine structure of blood capillaries. J Appl Physics 1953; 24: 14-24
  • 4 Thomas CM, Smart EJ. Caveolae structure and function. J Cell Mol Med 2008; 12: 796-809
  • 5 Thorn H, Stenkula KG, Karlsson M. et al. Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol Biol Cell 2003; 14: 3967-3976
  • 6 Moos T. Brain iron homeostasis. Dan Med Bull 2002; 49: 279-301
  • 7 Kiss AL, Turi A, Muller N. et al. Caveolae and caveolin isoforms in rat peritoneal macrophages. Micron 2002; 33: 75-93
  • 8 Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. Prog biophys Mol Biol 2008; 98: 149-160
  • 9 Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8: 185-194
  • 10 Smart EJ, Graf GA, McNiven MA. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999; 19: 7289-7304
  • 11 Halayko AJ, Stelmack GL. The association of caveolae, actin, and the dystrophin-glycoprotein complex: A role in smooth muscle phenotype and function?. Can J Physiol Pharmacol 2005; 83: 877-891
  • 12 Das M, Das DK. Caveolae, caveolin, and cavins: Potential targets for the treatment of cardiac disease. Ann Med 2012; 44: 530-541
  • 13 Ajmani P, Yadav HN. Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart. BMC Cardiovasc. Disord 2011; 11: 43
  • 14 Machleidt T, Li WP, Liu P. et al. Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol 2000; 148: 17-28
  • 15 Lisanti MP, Tang ZL, Sargiacomo M. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J Cell Biol 1993; 123: 595-604
  • 16 Uittenbogaard A, Smart EJ. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem 2000; 275: 25595-25599
  • 17 Vinten J, Voldstedlund M, Clausen H. et al. A 60- kDa protein abundant in adipocyte caveolae. Cell Tissue Res 2001; 305: 99-106
  • 18 Jansa P, Mason SW, Hoffmann-Rohrer U. et al. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 1998; 17: 2855-2864
  • 19 Hasegawa T, Takeuchi A, Miyaishi O. et al. PTRF (polymerase I and transcriptrelease factor) is tissue-specific and interacts with the BFCOL1 (binding factor of a type-I collagen promoter) zinc-finger transcription factor which binds to the two mouse type-I collagen gene promoters. Biochem J 2000; 347: 55-59
  • 20 Vinten J, Johnsen AH, Roepstorff P. et al. Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta 2005; 1717: 34-40
  • 21 Chang WJ, Rothberg KG, Kamen BA. et al. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 1992; 118: 63-69
  • 22 Thyberg J, Calara F, Dimayuga P. et al. Role of caveolae in cholesterol transport in arterial smooth muscle cells exposed to lipoproteins in vitro and in vivo. Lab Invest 1998; 78: 825-837
  • 23 Hailstones D, Sleer LS, Parton RG. et al. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 1998; 39: 369-379
  • 24 Smart EJ, Ying YS, Conrad PA. et al. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 1994; 127: 1185-1197
  • 25 Li S, Couet J, Lisanti MP. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271: 9182-29190
  • 26 Schlegel A, Lisanti MP. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev 2001; 12: 41-51
  • 27 Arnal JF, Dinh-Xuan AT, Pueyo M. et al. Endothelium-derived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 1999; 55: 1078-1087
  • 28 Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res 1999; 43: 521-531
  • 29 Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol 2003; 547: 21-33
  • 30 Balligand JL, Kobzik L, Han X. et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelia (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 1995; 270: 14582-14586
  • 31 Garcia-Cardena G, Martasek P, Masters BS. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 1997; 272: 25437-2544
  • 32 Campbell L, Gumbleton M, Ritchie K. Caveolae and the caveolins in human disease. Physiol Rev 2004; 84: 1341-1379
  • 33 Bender SB, Jia G, Sowers JR. Mineralocorticoid receptors: An appealing target to treat coronary microvascular dysfunction in diabetes. Diabetes 2015; 64: 3-5
  • 34 Seto SW, Krishna SM, Yu H. et al. Impaired acetylcholine-induced endothelium-dependent aortic relaxation by caveolin-1 in angiotensin II-infused apolipoprotein-E (ApoE-/-) knockout mice. PLoS One 2013; 8: e58481
  • 35 Sharma A, Sellers S, Stefanovic N. et al. Direct endothelial nitric oxide synthase activation provides atheroprotection in diabetes-accelerated atherosclerosis. Diabetes 2015; 64: 3937-3950
  • 36 Jia G, Sowers JR. Caveolin-1 in cardiovascular disease: A double-edged sword. Diabetes 2015; 64: 3645-3747
  • 37 Breton S, Lisanti MP, Tyszkowski R. et al. Basolateral distribution of caveolin-1 in the kidney. Absence from H+-atpase-coated endocytic vesicles in intercalated cells. J Histochem. Cytochem 1998; 46: 205-214
  • 38 Wang L, Zhang C, Su X. et al. Caveolin-1 defciency inhibits the basolateral K+channels in the distal convoluted tubule and impairs renal k+and Mg2+transport. J Am Soc Nephrol 2015; 26: 2678-2690
  • 39 Paunescu TG, Lu HA, Russo LM. et al. Vasopressin induces apical expression of caveolin in rat kidney collecting duct principal cells. Am J Physiol Renal Physiol 2013; 305: F1783-F1795
  • 40 Chen Z, Bakhshi FR, Shajahan AN. et al. Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell 2012; 23: 1388-1398
  • 41 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 42 Williams TM, Hassan GS, Li J. et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 2005; 280: 25134-15145
  • 43 Quann K, Gonzales DM, Mercier I. et al Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle 2013; 12: 1510-1520
  • 44 McLaughlin N, Annabi B, Bouzeghrane M. et al. The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (-)-epigallocatechin-3-gallate. Brain Res 2006; 1071: 1-9
  • 45 Shatz M, Liscovitch M. Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 2008; 84: 177-189
  • 46 Yang G, Truong LD, Wheeler TM. et al. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59: 5719-5723
  • 47 Ho CC, Huang PH, Huang HY. et al. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 2002; 161: 1647-1656
  • 48 Joo HJ, Oh DK, Kim YS. et al. Increased expression of caveolin1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 2004; 93: 291-296
  • 49 Kato K, Hida Y, Miyamoto M. et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 929-933
  • 50 Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 1997; 272: 30429-30438
  • 51 Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 1997; 94: 9660-9664
  • 52 Yamamoto M, Toya Y, Jensen RA. et al. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp Cell Res 1999; 247: 380-388
  • 53 Ishikawaa Y, Otsua K, Oshikawa J. Caveolin; different roles for insulin signal?. Cell Signal 2005; 17: 1175-1182
  • 54 Zagoory O, Braiman A, Priel Z. The mechanism of ciliary stimulation by acetylcholine: Roles of calcium, PKA, and PKG. J Gen Physiol 2002; 119: 329-339
  • 55 Wessler IK, Kirkpatrick CJ. The non-neuronal cholinergic system: An emerging drug target in the airways. Pulm Pharmacol Ther 2001; 14: 423-434
  • 56 Konig P, Dedio J, Oess S. et al. NOSIP and its interacting protein, eNOS, in the rat trachea and lung. J Histochem Cytochem 2005; 53: 155-164
  • 57 Krasteva G, Pfeil U, Drab M. et al. Caveolin-1 and -2 in airway epithelium: Expression and in situ association as detected by FRET-CLSM. Respir Res 2006; 7: 108
  • 58 Li C, Duan W, Yang F. et al. Caveolin-3-anchored microdomains at the rabbit sarcoplasmic reticulum membranes. Biochem Biophys Res Commun 2006; 344: 1135-1140
  • 59 Krasteva G, Pfeil U, Filip AM. et al. Caveolin-3 and eNOS colocalize and interact in ciliated airway epithelial cells in the rat. Int J Biochem Cell Biol 2007; 39: 615-625
  • 60 McNally EM, de Sa Moreira E, Duggan DJ. et al. Caveolin-3 in muscular dystrophy. Hum Mol Genet 1998; 7: 871-877
  • 61 Gazzerro E, Sotgia F, Bruno C. et al. Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 2010; 18: 137-145
  • 62 Bruning JC, Michael MD, Winnay JN. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998; 2: 559-569
  • 63 Eldar-Finkelman H, Schreyer SA, Shinohara MM. et al. Increased glycogen synthase kinase-3 activity in diabetes- and obesity-prone C57BL/6J mice. Diabetes 1999; 48: 1662-1666
  • 64 Nandi A, Kitamura Y, Accili D. Mouse models of insulin resistance. Physiol Rev 2004; 84: 623-647
  • 65 Cohen AW, Combs TP, Scherer PE. et al. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 2003; 285: 1151-1160
  • 66 Dupuy AM, Mas E, Ritchie K. et al. The relationship between apolipoprotein E4 and lipid metabolism is impaired in Alzheimer’s disease. Gerontology 2001; 47: 213-218
  • 67 Corder EH, Saunders AM, Strittmatter WJ. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921-923
  • 68 Hyman BT, West HL, Rebeck GW. et al. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc Natl Acad Sci USA 1995; 92: 3586-3590
  • 69 Premkumar DR, Cohen DL, Hedera P. et al. Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease. Am J Pathol 1996; 148: 2083-2095
  • 70 Poirier J, Davignon J, Bouthillier D. et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993; 342: 697-699
  • 71 Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569-572
  • 72 Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell 2001; 106: 403-411
  • 73 Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 2004; 25: 753-759
  • 74 Garrean S, Gao XP, Brovkovych V. et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol 2006; 177: 4853-4860
  • 75 Ohnuma K, Inoue H, Uchiyama M. et al. T-cell activation via CD26 and caveolin-1 in rheumatoid synovium. Mod Rheumatol 2006; 16: 3-13
  • 76 Malkin CJ, Channer KS, Jones TH. Testosterone and heart failure. Curr Opin Endocrinol Diabetes Obes 2010; 17: 262-268
  • 77 Golden KL, Marsh JD, Jiang Y. et al. Gonadectomy alters myosin heavy chain composition in isolated cardiac myocytes. Endocrine 2004; 24: 137-140
  • 78 Campelo AE, Cutini PH, Massheimer VL. Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J Endocrinol 2012; 213: 77-87
  • 79 Ota H, Akishita M, Akiyoshi T. et al. Testosterone deficiency accelerates neuronal and vascular aging of SAMP8 mice: protective role of eNOS and SIRT1. PLoS One 2012; 7: e29598
  • 80 Marsh JD, Lehmann MH, Ritchie RH. et al. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation 1998; 98: 256-261
  • 81 Feron O, Dessy C, Moniotte S. et al. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 1999; 103: 897-905
  • 82 Marber MS, Latchman DS, Walker JM. et al. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264-1272
  • 83 Goyal A, Semwal BC, Yadav HN. Abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. Hum Exp Toxicol 2016; 35: 644-653
  • 84 Gupta I, Goyal A, Singh NK. et al. Hemin, a heme oxygenase-1 inducer, restores the attenuated cardioprotective effect of ischemic preconditioning in isolated diabetic rat heart. Hum Exp Toxicol 2017; 36: 867-875