Subscribe to RSS
DOI: 10.1055/a-0873-3574
Die Rolle der Luftschadstoffe für die Gesundheit
Eine Replik auf die Expertise der Internationalen Gesellschaft für Umweltepidemiologie (ISEE) und der European Respiratory Society (ERS)The Role of Air Pollutants for HealthA Reply to the Expert Opinion of the International Society for Environmental Epidemiology (ISEE) and the European Respiratory Society (ERS)Publication History
Publication Date:
16 April 2019 (online)
Zusammenfassung
In Deutschland gibt es regionale Fahrverbote für ältere Dieselfahrzeuge ohne SCR-Katalysator bei Überschreitung der Grenzwerte für NO2. Dies hat zu einer intensiven Diskussion über die Rolle der Luftschadstoffe für die Gesundheit geführt. In der Replik wird dargestellt, dass die Daten zur Wirkung von Stickstoffdioxid (NO2) und Feinstaub (PM10 und PM2,5) nicht ausreichen, um die Fahrverbote zu begründen.
Für NO2 gibt es passagere Reaktionen bei unbehandelten Asthmatikern ab 500 µg/m3. Die deutschen Grenzwerte (Jahresmittelwert 40 µg/m3) fußen im Wesentlichen auf einer Metaanalyse von 9 Studien aus Innenraumbelastungen wobei nur in 4 Studien NO2 gemessen wurde. In der großen europäischen Escape-Studie von 2014 wurde kein Einfluss von NO2 auf die Mortalität gefunden.
Als Surrogatparameter für andere Schadstoffe ist NO2 ebenfalls nicht mehr geeignet, da seit Einführung der Partikelfilter bei Dieselautos (etwa ab 2000) der KFZ-Anteil am Feinstaub an der Straße unter 10 % liegt. Der Feinstaub besteht im Wesentlichen aus Aufwirbelung von mineralischen, organischen Bodensubstanzen sowie Reifenabrieb und wird am stärksten durch Wetterphänomene, vor allen Dingen durch Sonneneinstrahlung beeinflusst.
Die Grenzwerte für NO2 und Feinstaub werden errechnet aus epidemiologischen Beobachtungsstudien. Es findet sich zumeist eine schwache Assoziation zwischen der Konzentra-tion und zahlreichen Erkrankung sowie der Mortalität. Epidemiologische Beobachtungsstudien erlauben nur die Bildung einer Hypothese. Permanente Wiederholungen der Beobachtungsstudien betätigen nur, dass manche gefundenen Phänomene nicht zufällig sind. Eine Kausalität kann daraus nicht abgeleitet werden, da es zahlreiche Erklärungsmodelle neben dem NO2 und Feinstaub gibt. Dazu wären Interventionsstudien im Niedrigdosisbereich sowie Tierexperimente erforderlich. Diese Daten fehlen nahezu komplett bzw. sind, soweit vorhanden, allesamt negativ.
Nie diskutiert wird eine starke Widerlegung der Hypothese der Gefährdung von NO2 und Feinstaub im Grenzwertbereich durch das Inhalationsrauchen. Die Raucher stellen quasi einen inhalationstoxikologischen Großversuch dar. Der Zigarettenrauch enthält sehr hohe Feinstaub-, Stickstoffmonoxid- (NO) und NO2-Konzentrationen, die vom Organismus erstaunlich gut toleriert werden. Das hängt damit zusammen, dass NO ein Naturstoff ist, der in den Zellen oder auch in den Nasennebenhöhlen in z. T. sehr hohen Konzentrationen (über 30 000 µg/m3) vorkommt. Eines der Abbauprodukte von NO ist NO2, was im Wasser zu Nitrat und Nitrit disproportioniert wird. Ein Teil von NO2 wird zur Synthese von Fettsäuren verwendet.
Zigaretten haben ein Kondensat von ca. 7 – 10 mg. Nimmt man als Vergleich eine lebenslange Dauerbelastung durch Feinstaub und NO2 in den Grenzwertkonzentrationen an, müssten alle Raucher nach wenigen Tagen bis Monaten zahlreiche Erkrankungen entwickeln, die dem Feinstaub und NOx angelastet werden. Auch die Mortalität müsste drastisch erhöht sein; nahezu alle Raucher müssten bereits nach 1 packyear verstorben sein. Der Unterschied wird noch größer, wenn man die nachgewiesene Toxizität und Kanzerogenität des Zigarettenrauchs im Vergleich zu dem i. d. R. deutlich weniger gefährlichen Feinstaub an der Straße ins Verhältnis setzt.
Abstract
In Germany there are regional driving bans on older diesel vehicles without SCR catalytic converters if the limit values for nitrogen dioxide (NO2) are exceeded. This has led to an intensive discussion about the effects of air pollutants on human health. The study shows that the data on the effects of NO2 and particulate matter (PM10 and PM2.5) are not sufficient to justify the driving bans.
NO2 above 500 µg/m3 trigger temporary reactions in untreated asthmatics The German limit values (annual mean value 40 µg/m3) are mainly based on a meta-analysis of nine studies on indoor pollution, whereas only four studies measured NO2. In the large European Escape study of 2014, no influence of NO2 on mortality was found.
NO2 is also no longer suitable as a surrogate parameter for other pollutants, as the proportion of particulate matter on the road is below 10 % since the introduction of particulate filters in diesel cars (approximately from 2000). Particulate matter mainly consists of swirling up mineral, organic soil substances and tyre abrasion and is most strongly influenced by weather phenomena, above all by solar radiation.
The limit values for NO2 and particulate matter are calculated from epidemiological observational studies. There is usually a weak association between the concentration of the pollutants and numerous diseases and mortality. On the basis of epidemiological observational studies, hypotheses can be formulated. Repeated observational studies might suggest that some of the observed phenomena are not accidental. A causality cannot be deduced from this, since other factors besides NO2 and particulate matter might also be involved. To exclude these, intervention studies in the low-dose range and animal experiments are needed. Such data are almost completely missing or, as far as available, are all negative.
A strong refutation of the hypothesis of the hazard of NO2 and particulate matter in the limit value range by inhalation smoking is never discussed. The smokers represent quasi an inhalation toxicological large-scale experiment. Cigarette smoke contains very high concentrations of particulate matter, nitrogen monoxide (NO) and NO2, which are surprisingly well tolerated by the organism. This is due to the fact that NO is a natural substance that occurs in the cells or even in the paranasal sinuses in sometimes very high concentrations (over 30,000 µg/m3). One of the degradation products of NO is NO2, which, by hydrolytic disproportionation, is converted into nitrate and nitrite. A part of NO2 is used for the synthesis of fatty acids.
Cigarettes have a condensate of about 7 – 10 mg. Assuming a lifelong continuous exposure to particulate matter and NO2 in the limit concentrations, all smokers should have developed numerous diseases after a few days to months, which are attributed to particulate matter and NO2. The mortality rate should also be drastically higher; almost all smokers should have died after 1 pack year. The difference becomes even greater if one compares the proven toxicity and carcinogenicity of cigarette smoke with the fine dust on the road, which is usually much less dangerous.
-
Literatur
- 1 Nicht auf der Webseite der ERS/ISEE verfügbar. z. B. unter: https://www.duh.de/fileadmin/user_upload/download/Pressemitteilungen/Verkehr/Die_Rolle_der_Luftschadstoffe_f%C3%BCr_die_Gesundheit_-_Expertise_der_ISEE__ERS.pdf 2019
- 2 https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546 2009
- 3 https://www.epa.gov/isa/integrated-science-assessment-isa-nitrogen-dioxide-health-criteria 2016
- 4 https://cordis.europa.eu/project/rcn/88859/factsheet/en 2017
- 5 Wang M, Beelen R, Stafoggia M. et al. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects. Environ Int 2014; 66: 97-106
- 6 Beelen R, Stafoggia M, Raaschou-Nielsen O. et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology 2014; 25: 368-378
- 7 Brunekreef B, Beelen R, Hoek G. et al. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study. Res Rep Health Eff Inst 2009; 139: 5-71
- 8 Carey IM, Atkinson RW, Kent AJ. et al. Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. Am J Respir Crit Care Med 2013; 187: 1226-1233
- 9 Cesaroni G, Badaloni C, Gariazzo C. et al. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Perspect 2013; 121: 324-331
- 10 Turner MC, Jerrett M, Pope 3rd CA. et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am J Respir Crit Care Med 2016; 193: 1134-1142
- 11 Beelen R, Raaschou-Nielsen O, Stafoggia M. et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014; 383: 785-795
- 12 Beelen R, Hoek G, Raaschou-Nielsen O. et al. Natural-cause mortality and long-term exposure to particle components: an analysis of 19 European cohorts within the multi-center ESCAPE project. Environ Health Perspect 2015; 123: 525-533
- 13 https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/schwefeldioxid-emissionen#textpart-1 2018
- 14 Lederer DJ, Bell SC, Branson RD. et al. Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. Ann Am Thorac Soc 2019; 16: 22-28
- 15 Andersen ZJ, Stafoggia M, Weinmayr G. et al. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project. Environ Health Perspect 2017; 125: 107005
- 16 Faridi S, Shamsipour M, Krzyzanowski M. et al. Long-term trends and health impact of PM(2.5) and O(3) in Tehran, Iran, 2006 – 2015. Environ Int 2018; 114: 37-49
- 17 Lipfert FW. A critical review of the ESCAPE project for estimating long-term health effects of air pollution. Environ Int 2017; 99: 87-96
- 18 Lipfert FW. Letter to the Editor Re: Enstrom JE. Fine particulate and total mortality in Cancer Prevention Study cohort reanalysis. Dose-Response 2017; 15: 1-12
- 19 Stafoggia M, Cesaroni G, Peters A. et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 2014; 122: 919-925
- 20 Kabat GC. Hyping Health Risks: Environmental Hazards in Daily Life and the Science of Epidemiology. New York: Columbia University Press Irvington; 2008
- 21 Krieger N. Epidemiology and the web of causation: has anyone seen the spider?. Soc Sci Med 1994; 39: 887-903
- 22 Taubes G. Epidemiology faces its limits. Science 1995; 269: 164-169
- 23 Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA 2008; 300: 1439-1450
- 24 Tashkin DP, Celli B, Senn S. et al. UPLIFT Study Investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 2008; 359: 1543-1554
- 25 Wise RA, Anzueto A, Cotton D. et al. TIOSPIR Investigators. Tiotropium Respimat inhaler and the risk of death in COPD. N Engl J Med 2013; 369: 1491-1501
- 26 Gupta RP, Mukherjee M, Sheikh A. et al. Persistent variations in national asthma mortality, hospital admissions and prevalence by socioeconomic status and region in England. Thorax 2018; 73: 706-712
- 27 Hovanec J, Siemiatycki J, Conway DI. et al. Lung cancer and socioeconomic status in a pooled analysis of case-control studies. PLoS One 2018; 13: e0192999
- 28 Nordahl H. Social inequality in chronic disease outcomes. Dan Med J 2014; 61: B4943
- 29 Ohlmeier C, Langner I, Hillebrand K. et al. Mortality in the German Pharmacoepidemiological Research Database (GePaRD) compared to national data in Germany: results from a validation study. BMC Public Health 2015; 15: 570
- 30 Ponce NA, Hoggatt KJ, Wilhelm M. et al. Preterm birth: the interaction of traffic-related air pollution with economic hardship in Los Angeles neighborhoods. Am J Epidemiol 2005; 162: 140-148
- 31 Ratjen I, Schafmayer C, Enderle J. et al. Health-related quality of life in long-term survivors of colorectal cancer and its association with all-cause mortality: a German cohort study. BMC Cancer 2018; 18: 1156
- 32 Smith SG, Jackson SE, Kobayashi LC. et al. Social isolation, health literacy, and mortality risk: Findings from the English Longitudinal Study of Ageing. Health Psychol 2018; 37: 160-169
- 33 Vestbo J, Anderson JA, Calverley PM. et al. Adherence to inhaled therapy, mortality and hospital admission in COPD. Thorax 2009; 64: 939-943
- 34 Ding P, VanderWeele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding. Biometrika 2017; 104: 291-302
- 35 VanderWeele TJ, Hernán MA, Robins JM. Causal directed acyclic graphs and the direction of unmeasured confounding bias. Epidemiology 2008; 19: 720-728
- 36 VanderWeele TJ, Shpitser I. On the definition of a confounder. Ann Stat 2013; 41: 196-220
- 37 Pesch B, Kendzia B, Gustavsson P. et al. Cigarette smoking and lung cancer--relative risk estimates for the major histological types from a pooled analysis of case-control studies. Int J Cancer 2012; 131: 1210-1219
- 38 Li K, Hüsing A, Kaaks R. Lifestyle risk factors and residual life expectancy at age 40: a German cohort study. BMC Med 2014; 12: 59
- 39 https://www.epa.gov/pm-pollution/2006-national-ambient-air-quality-standards-naaqs-particulate-matter-pm25 2006
- 40 https://www.epa.gov/naaqs/particulate-matter-pm-air-quality-standards 2015
- 41 van Donkelaar A, Martin RV, Brauer M. et al. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ Health Perspect 2010; 118: 847-855
- 42 Philip S, Martin RV, van Donkelaar A. et al. Global chemical composition of ambient fine particulate matter for exposure assessment. Environ Sci Technol 2014; 48: 13060-13068
- 43 Klingner M, Sähn E. Feinstaub, was man darüber wissen sollte. Kurzbericht im Auftrag des VDA. https://cloud.ivi.fraunhofer.de/s/mB93zHpz7Lym7Eo 2006
- 44 Klingner M, Sähn E, Anke K. et al. Reduktionspotenziale verkehrsbeschränkender Maßnahmen in Bezug zu meteorologisch bedingten Schwankungen der PM10- und NOx-Immissionen. In: Gefahrstoffe – Reinhaltung der Luft. Düsseldorf: Springer-VDI-Verlag; 2006: 326-334 https://cloud.ivi.fraunhofer.de/s/mB93zHpz7Lym7Eo
- 45 Klingner M, Sähn E. Prediction of PM10 concentration on the basis of high resolution weather forecasting. Meteorologische Zeitschrift 2008; 17: 263-272 (https://cloud.ivi.fraunhofer.de/s/mB93zHpz7Lym7Eo)
- 46 Rost J, Holst T, Sähn E. et al. Variability of PM10 concentrations dependent on meteorological conditions. International Journal of Environment and Pollution (IJEP) 2009; 36 No.1/2/3: 3-18 (3), Interscience Publishers, Geneve, Switzerland, (https://cloud.ivi.fraunhofer.de/s/mB93zHpz7Lym7Eo)
- 47 Klingner M, Sähn E. Auswirkungen ordnungsrechtlicher Verkehrsmaßnahmen auf die lokale Feinstaubbelastung unter Berücksichtigung meteorologischer Einflüsse. Im Auftrag des Bundesministeriums für Verkehr, Bau- und Wohnungswesen, 2006 https://cloud.ivi.fraunhofer.de/s/mB93zHpz7Lym7Eo
- 48 Hesterberg TW, Long CM, Bunn WB. et al. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk. Inhal Toxicol 2012; 24 (Suppl. 01) 1-45
- 49 Mauderly JL. Toxicological and epidemiological evidence for health risks from inhaled engine emissions. Environ Health Perspect 1994; 102 (Suppl. 04) 165-171
- 50 Mayer A, Wyser M, Czerwinski C. et al. Erfahrungen mit Partikelfilter-Nachrüstungen bei Baumaschinen in der Schweiz. FAD-Konferenz. 2003
- 51 Mayer A, Matter U, Scheidegger G. et al. Particulate Traps for Retro-Fitting Construction Site Engines VERT: Final Measurements and Implementation. 1999 https://doi.org/10.4271/1999-01-0116 SAE
- 52 Behera D, Jindal SK. Respiratory symptoms in Indian women using domestic cooking fuels. Chest 1991; 100: 385-388
- 53 Herbarth O, Fritz G, Krumbiegel P. et al. Effect of sulfur dioxide and particulate pollutants on bronchitis in children -- a risk analysis. Environ Toxicol 2001; 16: 269-276
- 54 Pérez-Padilla R, Regalado J, Vedal S. et al. Exposure to biomass smoke and chronic airway disease in Mexican women. A case-control study. Am J Respir Crit Care Med 1996; 154: 701-706
- 55 Berzon R, Utkin WW, Marga J. et al. [Comparative investigations to the epidemiology of chronic bronchitis in Erfurt and Riga (author’s transl)]. Z Erkr Atmungsorgane 1980; 155: 341-351 Deutsch.
- 56 Peters A, Breitner S, Cyrys J. et al. The influence of improved air quality on mortality risks in Erfurt, Germany. Res Rep Health Eff Inst 2009; 137: 5-77
- 57 Nieminen P, Panychev D, Lyalyushkin S. et al. Environmental exposure as an independent risk factor of chronic bronchitis in northwest Russia. Int J Circumpolar Health 2013;
- 58 Nowak D, Heinrich J, Jörres R. et al. Prevalence of respiratory symptoms, bronchial hyperresponsiveness and atopy among adults: west and east Germany. Eur Respir J 1996; 9: 2541-2552
- 59 Nikula KJ, Green FH. Animal models of chronic bronchitis and their relevance to studies of particle-induced disease. Inhal Toxicol 2000; 12 (Suppl. 04) 123-153
- 60 Kodavanti UP, Mebane R, Ledbetter A. et al. Variable pulmonary responses from exposure to concentrated ambient air particles in a rat model of bronchitis. Toxicol Sci 2000; 54: 441-451
- 61 https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Berufskrankheiten/pdf/Merkblatt-4111.pdf?__blob=publicationFile&v=2 1997
- 62 Bauer H-D. https://publikationen.dguv.de/dguv/pdf/10002/rep07-95.pdf 1995
- 63 Marple VA, Rubow KL. An evaluation of the GCA respirable dust monitor 101-1. Am Ind Hyg Assoc J 1978; 39: 17-25
- 64 Köhler D, Vastag E. [Bronchial clearance]. Pneumologie 1991; 45: 314-332
- 65 Oberdörster G. Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol 1995; 21: 123-135
- 66 Sturm R. A computer model for the clearance of insoluble particles from the tracheobronchial tree of the human lung. Comput Biol Med 2007; 37: 680-690
- 67 Esplugues A, Ballester F, Estarlich M. et al. Indoor and outdoor concentrations and determinants of NO2 in a cohort of 1-year-old children in Valencia, Spain. Indoor Air 2010; 20: 213-223
- 68 Frey SE, Destaillats H, Cohn S. et al. Characterization of indoor air quality and resident health in an Arizona senior housing apartment building. J Air Waste Manag Assoc 2014; 64: 1251-1259
- 69 Mitteilungen der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Kommission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden. [Health evaluation of fine particulate matter in indoor air]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 51: 1370-1378
- 70 Sahu V, Elumalai SP, Gautam S. et al. Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. Int J Environ Health Res 2018; 28419-28431
- 71 Heudorf U. [Particulate matter in classrooms – problem and the impact of cleaning and ventilation with the City of Frankfurt am Main as an example]. Gesundheitswesen 2008; 70: 231-238
- 72 Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe. 2008 https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050
- 73 World Health Organization. Air Quality Guideline for Europe. 2000 www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf
- 74 World Health Organization. Air Quality Guidelines for Europe. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. 2006 http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf
- 75 International Programme on Chemical Savety. Chemical Safety Information from Intergovernmental Organizations. Environmental Health Criteria 188. Nitrogen Oxides. 1997 http://www.inchem.org/documents/ehc/ehc/ehc188.htm
- 76 Hasselblad V, Eddy DM, Kotchmar DJ. Synthesis of environmental evidence: nitrogen dioxide epidemiology studies. J Air Waste Manage Assoc 1992; 42: 662-671
- 77 Brasche S, Witthauer J, Bischof W. et al. [Determination of NO2 exposure -- personal passive sampling versus indoor measurement]. Zentralbl Hyg Umweltmed 1998; 201: 229-239
- 78 Logue JM, Klepeis NE, Lobscheid AB. et al. Pollutant exposures from natural gas cooking burners: a simulation-based assessment for Southern California. Environ Health Perspect 2014; 122: 43-50
- 79 Melia RJ, Florey CD, Chinn S. et al. Investigations into the relations between respiratory illness in children, gas cooking and nitrogen dioxide in the U.K. Tokai J Exp Clin Med 1985; 10: 375-378
- 80 Brand P, Bertram J, Chaker A. et al. Biological effects of inhaled nitrogen dioxide in healthy human subjects. Int Arch Occup Environ Health 2016; 89: 1017-1024
- 81 Brown JS. Nitrogen dioxide exposure and airway responsiveness in individuals with asthma. Inhal Toxicol 2015; 27: 1-14
- 82 Ezratty V, Guillossou G, Neukirch C. et al. Repeated nitrogen dioxide exposures and eosinophilic airway inflammation in asthmatics: a randomized crossover study. Environ Health Perspect 2014; 122: 850-855
- 83 Hesterberg TW, Bunn WB, McClellan RO. et al. Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol 2009; 39: 743-781
- 84 https://www.nap.edu/catalog/13374/acute-exposure-guideline-levels-for-selected-airborne-chemicals-volume-11 2012
- 85 Dijkstra A, Vonk JM, Jongepier H. et al. Lung function decline in asthma: association with inhaled corticosteroids, smoking and sex. Thorax 2006; 61: 105-110
- 86 Harmsen L, Gottlieb V, Makowska Rasmussen L. et al. Asthma patients who smoke have signs of chronic airflow limitation before age 45. J Asthma 2010; 47: 362-366
- 87 Church DF, Pryor WA. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 1985; 64: 111-126
- 88 https://www.bundestag.de/blob/559628/c67c74a62d1a30f6e342462f00c9ce98/wd-8-034-18-pdf-data.pdf 2018
- 89 Perfetti TA, Rodgman A. The Complexity of Tobacco and Tobacco Smoke. Beiträge zur Tabakforschung International/Contributions to Tobacco Research 2014; 24: 215-232
- 90 Chen A, Wink DA. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 25: 769-793
- 91 DeMartino AW, Kim-Shapiro DB, Patel RP. et al. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176: 228-245
- 92 Fukuto JM, Carrington SJ, Tantillo DJ. et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 16; 25: 769-793
- 93 Lundberg JO, Palm J, Alving K. Nitric oxide but not carbon monoxide is continuously released in the human nasal airways. Eur Respir J 2002; 20: 100-103
- 94 Ford PC, Wink DA, Stanbury DM. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 1993; 326: 1-3
- 95 Frank NR, Yoder RE, Brain JD. et al. SO2 (35S labeled) absorption by the nose and mouth under conditions of varying concentration and flow. Arch Environ Health 1969; 18: 315-322
- 96 Speizer FE, Frank NR. The uptake and release of SO2 by the human nose. Arch Environ Health 1966; 12: 725-728
- 97 Riess U, Tegtbur U, Fauck C. et al. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath. Anal Chim Acta 2010; 669: 53-62
- 98 Hagenbjörk A, Malmqvist E, Mattisson K. et al. The spatial variation of O(3), NO, NO(2) and NO (x) and the relation between them in two Swedish cities. Environ Monit Assess 2017; 189: 161
- 99 https://www.umweltbundesamt.de/daten/luft/ozon-belastung 2018
- 100 Rabl P, Scholz W. Wechselbeziehungen zwischen Stickstoffoxid- und Ozon-Immissionen, Datenanalysen aus Baden-Württemberg und Bayern 1990 – 2003. https://www4.lubw.baden-wuerttemberg.de/servlet/is/14245/entwicklung_stickstoffoxid_immissionen_1995_2003_Kurzfassung.pdf?command=downloadContent&filename=entwicklung_stickstoffoxid_immissionen_1995_2003_Kurzfassung.pdf 2017
- 101 https://fritzmielert.de/feinstaub/districts/ 2017
- 102 https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm10#textpart-1 2018
- 103 von Basshuysen R. Ottomotor mit Direkteinspritzung: Verfahren, Systeme, Entwicklung, Potenzial. Wiesbaden: Springer Vieweg; 2013
- 104 Merker GP, Teichmann R. et al., Hrsg. Grundlagen Verbrennungsmotoren. Funktionsweise und alternative Antriebssysteme Verbrennung, Messtechnik und Simulation. Wiesbaden: Springer Vieweg; 2014
- 105 https://www.wkm-ev.de/images/20170708_Die_Zukunft_des_Verbrennungsmotors.pdf 2017
- 106 https://www.adac.de/infotestrat/tests/eco-test/partikel_benziner/default.aspx 2017
- 107 https://www.adac.de/rund-ums-fahrzeug/abgas-diesel-fahrverbote/dieselkauf-abgasnorm/rde-messungen-cf-faktor/ 2017
- 108 Dageförde H, Kubach H, Koch T. et al. Innermotorische Ursachen für Partikelemissionen bei Ottomotoren mit Direkteinspritzung. Bargende M. Hrsg. 14. Internationales Stuttgarter Symposium: Automobil- und Motorentechnik. Wiesbaden: Springer Vieweg; 2014: 435-459
- 109 Dageförde H, Bertsch M, Kubach H. et al. Reduktion der Partikelemissionen bei Ottomotoren mit Direkteinspritzung. Motortechnische Zeitschrift 2015; 76: 86-93
- 110 https://www.umweltbundesamt.de/sites/default/files/medien/360/dokumente/empfehlungen_und_richtwerte_ergebnisprotokoll_der_7._sitzung_am_3.und4_._mai_2018.pdf 2018
- 111 https://www.umweltbundesamt.de/themen/gesundheit/kommissionen-arbeitsgruppen/ausschuss-fuer-innenraumrichtwerte-vormals-ad-hoc 2018
- 112 https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/2_abb_staub-pm10-emi-quellkat_2018.pdf 2018
- 113 https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen#textpart-1 2018
- 114 Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors. Sci Rep 2019; 9: 929
- 115 Schwarz K, Biller H, Windt H. et al. Characterization of exhaled particles from the healthy human lung--a systematic analysis in relation to pulmonary function variables. J Aerosol Med Pulm Drug Deliv 2010; 23: 371-379
- 116 Gralton J, Tovey ER, McLaws ML. et al. Respiratory virus RNA is detectable in airborne and droplet particles. J Med Virol 2013; 85: 2151-2159
- 117 Yan J, Grantham M, Pantelic J. EMIT Consortium. et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci USA 2018; 115: 1081-1086
- 118 Newman SP, Agnew JE, Pavia D. et al. Inhaled aerosols: lung deposition and clinical applications. Clin Phys Physiol Meas 1982; 3: 1-20
- 119 Asgharian B, Price OT, Yurteri CU. et al. Component-specific, cigarette particle deposition modeling in the human respiratory tract. Inhal Toxicol 2014; 26: 36-47
- 120 Kane DB, Asgharian B, Price OT. et al. Effect of smoking parameters on the particle size distribution and predicted airway deposition of mainstream cigarette smoke. Inhal Toxicol 2010; 22: 199-209
- 121 Sahu SK, Tiwari M, Bhangare RC. et al. Particle Size Distribution of Mainstream and Exhaled Cigarette Smoke and Predictive Deposition in Human Respiratory Tract. Aerosol and Air Quality Research 2013; 13: 324-332
- 122 Chepiga TA, Morton MJ, Murphy PA. et al. A comparison of the mainstream smoke chemistry and mutagenicity of a representative sample of the US cigarette market with two Kentucky reference cigarettes (K1R4F and K1R5F). Food Chem Toxicol 2000; 38: 949-962
- 123 https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100E-6.pdf 2004
- 124 Benjamin RM. Exposure to tobacco smoke causes immediate damage: a report of the Surgeon General. Public Health Rep 2011; 126: 158-159 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056024/
- 125 Colpani V, Baena CP, Jaspers L. et al. Lifestyle factors, cardiovascular disease and all-cause mortality in middle-aged and elderly women: a systematic review and meta-analysis. Eur J Epidemiol 2018; 33: 831-845
- 126 Sauer WH, Berlin JA, Strom BL. et al. Cigarette yield and the risk of myocardial infarction in smokers. Arch Intern Med 2002; 162: 300-306
- 127 Inoue-Choi M, Liao LM, Reyes-Guzman C. et al. Association of Long-term, Low-Intensity Smoking With All-Cause and Cause-Specific Mortality in the National Institutes of Health-AARP Diet and Health Study. JAMA Intern Med 2017; 177: 87-95
- 128 Hansen MS, Licaj I, Braaten T. et al. Sex Differences in Risk of Smoking-Associated Lung Cancer: Results From a Cohort of 600,000 Norwegians. Am J Epidemiol 2018; 187: 971-981
- 129 Harris JE, Thun MJ, Mondul AM. et al. Cigarette tar yields in relation to mortality from lung cancer in the cancer prevention study II prospective cohort, 1982-8. BMJ 2004; 328: 72
- 130 Lee PN, Forey BA, Coombs KJ. Systematic review with meta-analysis of the epidemiological evidence in the 1900s relating smoking to lung cancer. BMC Cancer 2012; 12: 385
- 131 Lee PN, Forey BA, Thornton AJ. et al. The relationship of cigarette smoking in Japan to lung cancer, COPD, ischemic heart disease and stroke: A systematic review. F1000Res 2018; 7: 204
- 132 Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med 2011; 11: 36
- 133 Lee EC, Fragala MS, Kavouras SA. et al. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J Strength Cond Res 2017; 31: 2920-2937
- 134 Milara J, Cortijo J. Tobacco, inflammation, and respiratory tract cancer. Curr Pharm Des 2012; 18: 3901-3938
- 135 Sun Q, Wang A, Jin X. et al. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 2005; 294: 3003-3010
- 136 Zhang T, Chen Y, Liu H. et al. Chronic unpredictable stress accelerates atherosclerosis through promoting inflammation in apolipoprotein E knockout mice. Thromb Res 2010; 126: 386-392
- 137 Lu XT, Liu YF, Zhang L. et al. Unpredictable chronic mild stress promotes atherosclerosis in high cholesterol-fed rabbits. Psychosom Med 2012; 74: 604-611
- 138 Mejia-Carmona GE, Gosselink KL, Pérez-Ishiwara G. et al. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus. Mol Cell Biochem 2015; 406: 121-129
- 139 Schneider A, Cyrys J, Breitner S. et al. Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoffdioxid-Exposition in Deutschland. Abschlussbericht im Auftrag des Umweltbundesamtes, überarbeitete Version (Februar 2018). Umweltbundesamt; 2018 ISSN 1862-4340. https://www.umweltbundesamt.de/sites/default/files/medien/421/publikationen/abschlussbericht_no2_krankheitslast_final_2018_03_05.pdf
- 140 Morfeld P, Erren TC. [Why is the “Number of Premature Deaths Due to Environmental Exposures” not Appropriately Quantifiable?]. Gesundheitswesen 2019; 81: 144-149