Subscribe to RSS
DOI: 10.1055/a-0899-0068
Möglichkeiten der nicht operativen Behandlung von Pseudarthrosen
Non-Operative Treatment of Non-UnionsPublication History
Publication Date:
19 November 2019 (online)
Zusammenfassung
Pseudarthrosen sind häufige Verletzungsfolgen nach Frakturen. Goldstandard der Behandlung dieser Frakturheilungsstörungen ist die operative Therapie basierend auf dem „Diamond Concept“. Unter bestimmten Voraussetzungen ist jedoch eine nicht operative Behandlung von Pseudarthrosen möglich. In der Folge werden die am häufigsten angewendeten konservativen Verfahren einschließlich Belastungssteigerung und biophysikalischer Maßnahmen (niedrig intensivierte gepulste Ultraschalltherapie, fokussierte hochenergetische extrakorporale Stoßwellentherapie, elektrische und elektromagnetische Therapie) beschrieben und die sinnvolle Indikationsstellung, die Vor- und Nachteile sowie der Stellenwert dieser Möglichkeiten diskutiert.
Abstract
Non-union is a common complication after bone fracture. The surgical treatment - based on the “diamond concept” – is the gold standard in the therapy of fracture healing disturbance. Under certain circumstances a conservative non-union treatment is possible. The present review describes the most commonly used conservative methods for non-union treatment including full-weight-bearing and biophysical procedures (low intensity pulsed ultrasound, high-energy focussed extracorporeal shockwave therapy, electric and electromagnetic field therapy) and discusses the correct indications, the advantages and disadvantages and the value of the conservative methods in the non-union treatment.
-
Literatur
- 1 Tzioupis C, Giannoudis PV. Prevalence of long-bone non-unions. Injury 2007; 38 (Suppl. 02) S3-S9 doi:10.1016/S0020-1383(07)80003-9
- 2 Zura R, Xiong Z, Einhorn T. et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016; 151: e162775 doi:10.1001/jamasurg.2016.2775
- 3 Calori GM, Albisetti W, Agus A. et al. Risk factors contributing to fracture non-unions. Injury 2007; 38 (Suppl. 02) S11-S18 doi:10.1016/S0020-1383(07)80004-0
- 4 Weber BG, Czech O. Pseudarthrosen – Pathophysiologie, Biomechanik, Therapieergebnisse. Bern, Stuttgart, Wien: Huber; 1973
- 5 Calori GM, Phillips M, Jeetle S. et al. Classification of non-union: Need for a new scoring system?. Injury 2008; 39 (Suppl. 02) S59-S63 doi:10.1016/S0020-1383(08)70016-0
- 6 Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury 2007; 38 (Suppl. 04) S3-S6
- 7 Higgins A, Glover M, Yang Y. et al. EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: A NICE medical technology guidance. Appl Health Econ Health Policy 2014; 12: 477-484 doi:10.1007/s40258-014-0117-6
- 8 Furia JP, Juliano PJ, Wade AM. et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010; 92: 846-854 doi:10.2106/JBJS.I.00653
- 9 Everding J, Freistuhler M, Stolberg-Stolberg J. et al. [Extracorporal shock wave therapy for the treatment of pseudarthrosis: new experiences with an old technology]. Unfallchirurg 2017; 120: 969-978 doi:10.1007/s00113-016-0238-5
- 10 Egol KA, Bechtel C, Spitzer AB. et al. Treatment of long bone nonunions: factors affecting healing. Bull NYU Hosp Jt Dis 2012; 70: 224-231
- 11 Moghaddam A, Thaler B, Bruckner T. et al. Treatment of atrophic femoral non-unions according to the diamond concept: Results of one- and two-step surgical procedure. J Orthop 2016; 14: 123-133 doi:10.1016/j.jor.2016.10.003
- 12 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald; 1892
- 13 Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolffʼs law: The bone modeling problem. Anat Rec 1990; 226: 403-413 doi:10.1002/ar.1092260402
- 14 Haffner-Luntzer M, Liedert A, Ignatius A. [Mechanobiology and bone metabolism: clinical relevance for fracture treatment]. Unfallchirurg 2015; 118: 1000-1006 doi:10.1007/s00113-015-0102-z
- 15 Houben IB, Raaben M, Van Basten Batenburg M. et al. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures. Eur J Orthop Surg Traumatol 2018; 28: 1429-1436 doi:10.1007/s00590-018-2190-2
- 16 Sarmiento A, Burkhalter WE, Latta LL. Functional bracing in the treatment of delayed union and nonunion of the tibia. Int Orthop 2003; 27: 26-29 doi:10.1007/s00264-002-0405-x
- 17 Harrison A, Lin S, Pounder N. et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 2016; 70: 45-52 doi:10.1016/j.ultras.2016.03.016
- 18 Reher P, Harris M, Whiteman M. et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 2002; 31: 236-241 doi:10.1016/S8756-3282(02)00789-5
- 19 Leung KS, Cheung WH, Zhang C. et al. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res 2004; (418) 253-259
- 20 Hasegawa T, Miwa M, Sakai Y. et al. Osteogenic activity of human fracture haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. J Bone Joint Surg Br 2009; 91: 264-270 doi:10.1302/0301-620X.91B2.20827
- 21 Suzuki A, Takayama T, Suzuki N. et al. Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS17/2.8 cells. J Oral Sci 2009; 51: 29-36 doi:10.2334/josnusd.51.29
- 22 Nolte PA, van der Krans A, Patka P. et al. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 2001; 51: 693-702
- 23 Zura R, Della Rocca GJ, Mehta S. et al. Treatment of chronic (> 1 year) fracture nonunion: Heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury 2015; 46: 2036-2041 doi:10.1016/j.injury.2015.05.042
- 24 Biglari B, Yildirim TM, Swing T. et al. Failed treatment of long bone nonunions with low intensity pulsed ultrasound. Arch Orthop Trauma Surg 2016; 136: 1121-1134 doi:10.1007/s00402-016-2501-1
- 25 Moghaddam A, Yildirim TM, Westhauser F. et al. Low intensity pulsed ultrasound in the treatment of long bone nonunions: evaluation of cytokine expression as a tool for objectifying nonunion therapy. J Orthop 2016; 13: 306-312 doi:10.1016/j.jor.2016.06.028
- 26 Schofer MD, Block JE, Aigner J. et al. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Disord 2010; 11: 229 doi:10.1186/1471-2474-11-229
- 27 Vincent KCS, dʼAgostino MC. History of Shock Wave Treatment and its basic Principles. In: Wang C-J, Schaden W, Ko J-Y. eds. Shockwave Medicine. Vol 6. Basel: Karger; 2018: 1-16
- 28 Shrivastava SK. Kailash. Shock wave treatment in medicine. J Biosci 2005; 30: 269-275
- 29 Wess O. Physikalische Grundlagen der extrakorporalen Stoßwellentherapie. J Min Stoffwechs 2004; 11: 7-18
- 30 Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012; 7: 11 doi:10.1186/1749-799X-7-11
- 31 Schaden W, Mittermayr R, Haffner N. et al. Extracorporeal shockwave therapy (ESWT)–first choice treatment of fracture non-unions?. Int J Surg 2015; 24(Pt B): 179-183 doi:10.1016/j.ijsu.2015.10.003
- 32 Cacchio A, Giordano L, Colafarina O. et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009; 91: 2589-2597 doi:10.2106/JBJS.H.00841
- 33 Furia JP, Juliano PJ, Wade AM. et al. Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 2010; 92: 846-854 doi:10.2106/JBJS.I.00653
- 34 Notarnicola A, Moretti L, Tafuri S. et al. Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 2010; 36: 1306-1313 doi:10.1016/j.ultrasmedbio.2010.05.004
- 35 Moya D, Ramon S, Schaden W. et al. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am 2018; 100: 251-263 doi:10.2106/JBJS.17.00661
- 36 Everding J, Roßlenbroich S, Raschke MJ. Ultraschall und Stoßwelle in der Pseudarthrosentherapie. Trauma Berufskrankh 2017; 19 (Suppl. 03) S260-S266 doi:10.1007/s10039-017-0310-6
- 37 Yasuda I. Electrical callus and callus formation by electret. Clin Orthop Relat Res 1977; (124) 53-56
- 38 Schmidt-Rohlfing B, Silny J, Niethard FU. [Pulsating electromagnetic fields in treatment of injuries and illnesses of the locomotor system–an overview and meta-analysis]. Z Orthop Ihre Grenzgeb 2000; 138: 379-389 doi:10.1055/s-2000-10165
- 39 Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res 2012; 7: 24 doi:10.1186/1749-799X-7-24
- 40 Shi HF, Xiong J, Chen YX. et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord 2013; 14: 35 doi:10.1186/1471-2474-14-35
- 41 Murray HB, Pethica BA. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures. Orthop Res Rev 2016; 8: 67-72 doi:10.2147/ORR.S113756
- 42 Ongaro A, Pellati A, Bagheri L. et al. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 2014; 35: 426-436 doi:10.1002/bem.21862
- 43 Schwartz Z, Simon BJ, Duran MA. et al. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J Orthop Res 2008; 26: 1250-1255 doi:10.1002/jor.20591
- 44 Yong Y, Ming ZD, Feng L. et al. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med 2016; 10: E537-E545 doi:10.1002/term.1864
- 45 Bagheri L, Pellati A, Rizzo P. et al. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J Tissue Eng Regen Med 2018; 12: 304-315 doi:10.1002/term.2455
- 46 Streit A, Watson BC, Granata JD. et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int 2016; 37: 919-923 doi:10.1177/1071100716652621
- 47 Cacchio A, Giordano L, Colafarina O. et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 2009; 91: 2589-2597 doi:10.2106/JBJS.H.00841
- 48 Steinacker T, Steuer M. Use of extracorporeal shockwave therapy (ESWT) in sports orthopedics. Sportverletz Sportschaden 2001; 15: 45-49 doi:10.1055/s-2001-14817
- 49 Jingushi S, Mizuno K, Matsushita T. et al. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures. J Orthop Sci 2007; 12: 35-41 doi:10.1007/s00776-006-1080-3
- 50 Watanabe Y, Arai Y, Takenaka N. et al. Three key factors affecting treatment results of low-intensity pulsed ultrasound for delayed unions and nonunions: Instability, gap size, and atrophic nonunion. J Orthop Sci 2013; 18: 803-810 doi:10.1007/s00776-013-0415-0