Exp Clin Endocrinol Diabetes 2020; 128(06/07): 401-413
DOI: 10.1055/a-1139-9200
Mini-Review

Endocrine, Metabolic and Pharmacological Effects of Thyronamines (TAM), Thyroacetic Acids (TA) and Thyroid Hormone Metabolites (THM) – Evidence from in vitro, Cellular, Experimental Animal and Human Studies

Georg Homuth
2   Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
,
Julika Lietzow
1   Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
,
Nancy Schanze
1   Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
,
Janine Golchert
2   Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
,
1   Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
› Author Affiliations
Funding: Funding for this project has been received from the Deutsche Forschungsgemeinschaft DFG in the framework of the Priority Programme ThyroidTransAct SPP 1629 (TTA KO 922/16–2 to KJ and TTA HO 2140/6–2 to GH).

Abstract

Thyroid hormone metabolites (THM) with few or no iodine substituents such as 3,5-T2, the thyronamines 3-T1AM and T0AM, and their oxidation products, the thyroacetic acids (TA) formed by monoamine oxidases, have recently attracted major interest due to their metabolic actions which are in part distinct from those of the classical thyromimetic hormone T3, the major ligand of T3 receptors. This review compiles and discusses in vitro effects of 3,5-T2, TAM and TA reported for thyrocytes, pancreatic islets and hepatocytes as well as findings from in vivo studies in mouse models after single or repeated administration of pharmacological doses of these agents. Comparison of the 3,5-T2 effects on the transcriptome with not yet published proteome data in livers of obese mice on high fat diet indicate a distinct anti-steatotic effect of this THM. Furthermore, uptake, metabolism, and cellular actions via various receptors such as trace amine-associated receptors (TAAR), alpha-adrenergic, GPCR and T3 receptors are discussed. Studies on postulated pathways of biosynthesis of 3-T1AM, its effects on the HPT-axis and thyroid gland as well as insulin secretion are reviewed. 3-T1AM also acts on hepatocytes and interferes with TRPM8-dependent signaling in human cell lines related to the eye compartment. Human studies are presented which address potential biosynthesis routes of 3,5-T2 and 3-T1AM from THM precursors, especially T3. The current state of diagnostic analytics of these minor THM in human blood is portrayed comparing and critically discussing the still divergent findings based on classical immunoassay and recently developed liquid-chromatography/mass- spectrometry methods, which allow quantification of the thyronome spectrum from one single small volume serum sample. The clinical perspectives of use and potential abuse of these biologically active THM is addressed.



Publication History

Received: 22 September 2019
Received: 21 January 2020

Accepted: 16 March 2020

Article published online:
25 May 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Kendall EC. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid its chemical nature and physiologic activity. JAMA 1915; 64: 2042-2043
  • 2 Gross J, Pitt-Rivers R. 3:5:3' -triiodothyronine. 1. Isolation from thyroid gland and synthesis. Biochem J 1953; 53: 645-650. PMID: 13032123
  • 3 Köhrle J. The colorful diversity of thyroid hormone metabolites. Eur Thyroid J 2019; 8: 115-129
  • 4 Mendel CM. The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 1989; 10: 232-274. Review. PMID: 2673754
  • 5 Köhrle J. Mass spectrometry-based determination of thyroid hormones and their metabolites in endocrine diagnostics and research. 2019 in revision, ECED, this issue
  • 6 Richards KH, Schanze N, Monk R. et al. A validated LC-MS/MS method for cellular thyroid hormone metabolism: Uptake and turnover of mono-iodinated thyroid hormone metabolites by PCCL3 thyrocytes. PLoS One 2017; 12: e0183482
  • 7 Richards K, Rijntjes E, Rathmann D. et al Avoiding the pitfalls when quantifying thyroid hormones and their metabolites using mass spectrometric methods: The role of quality assurance. Mol Cell Endocrinol 2017; 458: 44-56
  • 8 Jonklaas J, Sathasivam A, Wang H. et al. 3,3'-Diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocr Pract 2014; 20: 797-807
  • 9 Welsh KJ, Stolze BR, Yu X. et al. Assessment of thyroid function in intensive care unit patients by liquid chromatography tandem mass spectrometry methods. Clin Biochem 2017; 50: 318-322
  • 10 Álvarez E, Madrid Y, Marazuela MD. Comparison of sample preparation strategies for target analysis of total thyroid hormones levels in serum by liquid chromatography-quadrupole time-of-flight-mass spectrometry. Talanta 2017; 164: 570-579
  • 11 Soldin OP, Soldin SJ. Thyroid hormone testing by tandem mass spectrometry. Clin Biochem 2011; 44: 89-94
  • 12 Li ZM, Giesert F, Vogt-Weisenhorn D. et al. Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2018; 1534: 85-92
  • 13 Yu S, Zhou W, Cheng X. et al. Comparison of Six Automated Immunoassays With Isotope-Diluted Liquid Chromatography-Tandem Mass Spectrometry for Total Thyroxine Measurement. Ann Lab Med 2019; 39: 381-387
  • 14 Younis IR, Ahmed MA, Burman KD. et al. Stable isotope pharmacokinetic studies provide insight into effects of age, sex, and weight on levothyroxine metabolism. Thyroid 2018; 28: 41-49
  • 15 Bowerbank SL, Carlin MG, Dean JR. A direct comparison of liquid chromatography-mass spectrometry with clinical routine testing immunoassay methods for the detection and quantification of thyroid hormones in blood serum. Anal Bioanal Chem 2019; 411: 2839-2853
  • 16 Senese R, de Lange P, Petito G. et al. 3,5-Diiodothyronine: A Novel Thyroid Hormone Metabolite and Potent Modulator of Energy Metabolism. Front Endocrinol (Lausanne) 2018; 9: 427
  • 17 Goglia F. The effects of 3,5-diiodothyronine on energy balance. Front Physiol 2015; 5: 528
  • 18 Köhrle J, Biebermann H. 3-Iodothyronamine-A thyroid hormone metabolite with distinct target profiles and mode of action. Endocr Rev 2019; 40: 602-630.
  • 19 Laurino A, Landucci E, Resta F. et al. Anticonvulsant and neuroprotective effects of the thyroid hormone metabolite 3-iodothyroacetic acid. Thyroid 2018; 28: 1387-1397
  • 20 Groeneweg S, Peeters RP, Moran C et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: An international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol 2019; pii: S2213-8587(19)30155-X. doi: 10.1016/S2213-8587(19)30155-X PMID: 31377265
  • 21 Klieverik LP, Foppen E, Ackermans MT. et al. Central effects of thyronamines on glucose metabolism in rats. J Endocrinol 2009; 201: 377-386
  • 22 Manni ME, De Siena G, Saba A. et al. 3-Iodothyronamine: A modulator of the hypothalamus-pancreas-thyroid axes in mice. Br J Pharmacol 2012; 166: 650-658
  • 23 Hoefig CS, Wuensch T, Rijntjes E. et al. Biosynthesis of 3-Iodothyronamine From T4 in murine intestinal tissue. Endocrinology 2015; 156: 4356-4364
  • 24 Hackenmueller SA, Marchini M, Saba A. et al. Biosynthesis of 3-iodothyronamine (T1AM) is dependent on the sodium-iodide symporter and thyroperoxidase but does not involve extrathyroidal metabolism of T4. Endocrinology 2012; 153: 5659-5667
  • 25 Schanze N, Jacobi SF, Rijntjes E. et al. 3-Iodothyronamine decreases expression of genes involved in iodide metabolism in mouse thyroids and inhibits iodide uptake in PCCL3 thyrocytes. Thyroid 2017; 27: 11-22
  • 26 Szumska J, Qatato M, Rehders M. et al. Trace amine-associated receptor 1 localization at the apical plasma membrane domain of fisher rat thyroid epithelial cells is confined to cilia. Eur. Thyroid J 2015; 4: 30-41
  • 27 Szumska J, Batool Z, Al-Hashimi A et al. Treatment of rat thyrocytes in vitro with cathepsin B and L inhibitors results in disruption of primary cilia leading to redistribution of the trace amine associated receptor 1 to the endoplasmic reticulum. Biochimie 2019; pii: S0300- 9084(19)30201-9 doi: 10.1016/j.biochi.2019.07.010. PMID: 31302164
  • 28 Qatato M, Szumska J, Skripnik V. et al. Canonical TSH Regulation of Cathepsin-Mediated Thyroglobulin Processing in the Thyroid Gland of Male Mice Requires Taar1 Expression. Front Pharmacol 2018; 9: 221
  • 29 Zhukov IS, Kubarskaya LG, Tissen IY et al. Minimal Age‑Related Alterations in Behavioral and Hematological Parameters in Trace Amine‑Associated Receptor 1 (TAAR1) Knockout Mice. Cellular and Molecular Neurobiology 2019; https://doi.org/10.1007/s10571-019- 00721-4
  • 30 Lietzow J. Effects of the Thyroid Hormone Metabolite 3,5-T2 on Energy Metabolism and the thyroid Hormone Axis in Mice on Normal Diet and High-fat Diet. 2017. Thesis, Free University, Berlin. https://refubium.fu-berlin.de/handle/fub188/1485
  • 31 Colin IM, Denef JF, Lengele B. et al. Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 2013; 34: 209-238
  • 32 Song Y, Driessens N, Costa M. et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 2007; 92: 3764-3773
  • 33 Antonica F, Kasprzyk DF, Opitz R. et al. Generation of functional thyroid from embryonic stem cells. Nature 2012; 491: 66-71
  • 34 Schanze N. Role of the Thyroid Hormone Metabolite 3-iodothyronAmine in the Regulation of the Thyroid Hormone Homeostasis. 2017 PhD Thesis Free University Berlin https://refubium.fu-berlin.de/handle/fub188/201
  • 35 Kurmann AA, Serra M, Hawkins F. et al. Regeneration of Thyroid Function By Transplantation Of Differentiated Pluripotent Stem Cells. Cell Stem Cell 2015; 17: 527-542
  • 36 Fernandez Vallone V, Opitz R, Stachelscheid H et al. Paving the way towards human thyroid follicles in vitro: what can we learn? Ps2-11-05, Abstract-ID: 161. DGE Göttingen, Abstract.
  • 37 Fernandez Vallone V, Vural Ö, Opitz R et al. Thyrosphere: An Ipsc-Derived Thyroid-Follicule-Model For Basic and Translational Science. DGE. 2018; Bonn; Abstract-ID: P03-11
  • 38 Lehmphul I, Hoefig CS, Köhrle J. 3-Iodothyronamine reduces insulin secretion in vitro via a mitochondrial mechanism. Mol Cell Endocrinol 2018; 460: 219-228
  • 39 Venditti P, Napolitano G, Di Stefano L. et al. Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 2011; 341: 55-62
  • 40 Regard JB, Kataoka H, Cano DA. et al. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest 2007; 117: 4034-4043
  • 41 Braulke LJ, Klingenspor M, DeBarber A et al. 3-Iodothyronamine: A novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 2008; Feb 178: 167–177. PMID: 17912534
  • 42 Dinter J, Khajavi N, Mühlhaus J. et al. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. Eur Thyroid J 2015; 4 (Suppl. 01) 21-29
  • 43 Ungati H, Govindaraj V, Mugesh G. The remarkable effect of halogen substitution on the membrane transport of fluorescent molecules in living cells. Angew Chem Int Ed Engl 2018; 57: 8989-8993
  • 44 Govindaraj V, Ungati H, Jakka SR. et al. Directing Traffic: Halogen-Bond-Mediated Membrane Transport. Chemistry 2019; 25: 11180-11192
  • 45 Lehmphul I. Zelluläre Wirkung, Wirkmechanismen und Nachweisverfahren von Schilddrüsenhormonen und ihren Metaboliten. 2015 Thesis, Humboldt University Berlin
  • 46 Ghelardoni S, Chiellini G, Frascarelli S. et al. Uptake and metabolic effects of 3-iodothyronamine in hepatocytes. J Endocrinol 2014; 221: 101-110
  • 47 Hoefig CS, Zucchi R, Köhrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid 2016; 26: 1656-1673
  • 48 Dinter J, Mühlhaus J, Jacobi SF. et al. 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 2015; 54: 205-216
  • 49 Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?. Front Endocrinol (Lausanne) 2017; 8: 198
  • 50 Lucius A, Khajavi N, Reinach PS. et al. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells. Cell Signal 2016; 28: 136-147
  • 51 Scanlan TS. Minireview: 3-Iodothyronamine (T1AM): A new player on the thyroid endocrine team?. Endocrinology 2009; 150: 1108-1111
  • 52 Türker E, Garreis F, Khajavi N. et al. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T1AM) in Human Corneal Keratocytes. Front Endocrinol (Lausanne) 2018; 9: 670
  • 53 Walcher L, Budde C, Böhm A. et al. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018; 9: 1234
  • 54 Harder L, Schanze N, Sarsenbayeva A. et al. In vivo Effects of Repeated Thyronamine Administration in Male C57BL/6J Mice. Eur Thyroid J 2018; 7: 3-12
  • 55 Hoefig CS, Jacobi SF, Warner A. et al. 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 2015; 172: 3426-3433
  • 56 Stäubert C, Böselt I, Bohnekamp J. et al. Structural and Functional Evolution of the Trace Amine-Associated Receptors TAAR3, TAAR4 and TAAR5 in Primates. PLoS ONE 2010; 5: e11133
  • 57 Stäubert C, Bohnekamp J, Schöneberg T. Determinants involved in subtype-specific functions of rat trace amine-associated receptors 1 and 4. Br J Pharmacol 2013; 168: 1266-1278
  • 58 Chiellini G, Cioffi F, Senese R. et al. Editorial: Thyroid Hormone and Metabolites: Central Versus Peripheral Effects. Front Endocrinol (Lausanne) 2019; 10: 240
  • 59 Lietzow J, Golchert J, Pietzner M et al. Comparative analysis of the effects of long term 3,5-T2 treatment on the murine hepatic proteome and transcriptome under conditions of normal diet and high fat diet. 2020; in revision
  • 60 Lietzow J, Golchert J, Homuth G. et al. 3,5-T2 alters expression of murine genes relevant for xenobiotic, steroid, and thyroid hormone metabolism. J Mol Endocrinol 2016; 56: 311-323
  • 61 Incerpi S, de Vito P, Luly P. et al. Short-term effects of thyroid hormones and 3,5-diiodothyronine on membrane transport systems in chick embryo hepatocytes. Endocrinology 2002; 143: 1660-1668
  • 62 Rochira A, Damiano F, Marsigliante S. et al. 3,5-Diiodo-l-thyronine induces SREBP-1 proteolytic cleavage block and apoptosis in human hepatoma (HepG2) cells. Biochimica et biophysica acta 2013; 1831: 1679-1689
  • 63 de Lange P, Cioffi F, Senese R. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes 2011; 60: 2730-2739
  • 64 Lombardi A, de Lange P, Silvestri E. et al. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. American journal of physiology. Endocrinology and metabolism 2009; 296: E497-E502
  • 65 Mullur R, Liu Y-Y, Brent GA. Thyroid hormone regulation of metabolism. Physiological reviews 2014; 94: 355-382
  • 66 Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends in endocrinology and metabolism: TEM 2014; 25: 538-545
  • 67 Ahmadian M, Suh JM, Hah N. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nature medicine 2013; 19: 557-566
  • 68 Vacca M, Degirolamo C, Mariani-Costantini R. et al. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. Wiley interdisciplinary reviews. Systems biology and medicine 2011; 3: 562-587
  • 69 Martín-Montalvo A, Villalba JM, Navas P. et al. NRF2, cancer and calorie restriction. Oncogene 2011; 30: 505-520
  • 70 Koliaki C, Szendroedi J, Kaul K. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell metabolism 2015; 21: 739-746
  • 71 Goglia F. Biological effects of 3,5-diiodothyronine (T2). Biochemistry (Moscow) 2005; 70: 164-172
  • 72 Lanni A, Moreno M, Lombardi A. et al. 3,5-diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005; 19: 1552-1554
  • 73 Moreno M, de Lange P, Lombardi A. et al. Metabolic effects of thyroid hormone derivatives. Thyroid : Official Journal of the American Thyroid Association 2008; 18: 239-253
  • 74 Mollica MP, Lionetti L, Moreno M. et al. 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. Journal of hepatology 2009; 51: 363-370
  • 75 Jonas W, Lietzow J, Wohlgemuth F. et al. 3,5-Diiodo-L-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 2015; 156: 389-399
  • 76 Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Annals of clinical biochemistry 2011; 48: 498-515
  • 77 Köhrle J, Lehmphul I, Pietzner M. et al. 3,5-T2 – A Janus-Faced Thyroid Hormone Metabolite Exerts Both Canonical T3-Mimetic Endocrine And Intracrine Hepatic Action. Frontiers in Endocrinology, Thyroid Endocrinology 2019;
  • 78 da Silva Teixeira S, Filgueira C, Sieglaff DH. et al. 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol (Oxf) 2017; 220: 238-250
  • 79 Lorenzini L, Ghelardoni S, Saba A. et al. Recovery of 3-Iodothyronamine and derivatives in biological matrixes: Problems and pitfalls. Thyroid 2017; 27: 1323-1331
  • 80 Roy G, Placzek E, Scanlan TS. ApoB-100-containing lipoproteins are major carriers of 3-iodothyronamine in circulation. J Biol Chem 2012; 287: 1790-1800 doi: 10.1074/jbc.M111.275552
  • 81 Lehmphul Brabant G, Wallaschofski H et al. Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 2014; 24: 1350–1360. doi: 10.1089/thy.2013.0688
  • 82 Pinna G, Brödel O, Visser T. et al. Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 2002; 143: 1789-1800
  • 83 Richards KH, Monk R, Renko K. et al. A combined LC-MS/MS and LC-MS3 multi-method for the quantification of iodothyronines in human blood serum. Anal Bioanal Chem 2019; 411: 5605-5616
  • 84 Lorenzini L, Nguyen NM, Sacripanti G et al. Assay of Endogenous 3,5-diiodo-L-thyronine (3,5-T2) and 3,3'-diiodo-L-thyronine (3,3'-T2) in Human Serum: A Feasibility Study. Front Endocrinol (Lausanne) 2019; Feb 19 10: 88. doi: 10.3389/fendo.2019.00088. eCollection 2019. PMID: 30837954