Klin Monbl Augenheilkd 2020; 237(07): 907-919
DOI: 10.1055/a-1148-2744
CME-Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Refraktive Hornhautchirurgie: Nachkorrekturen

Enhancements after Refractive Corneal Surgery
Daniel Kook
,
Wolfgang J. Mayer
,
Mehdi Shajari
,
Gernot Steinwender
,
Thomas Kohnen
Further Information

Publication History

Publication Date:
17 April 2020 (online)

Zusammenfassung

In den 30 Jahren seit Beginn der laserassistierten Hornhautchirurgie sind die Techniken zur Korrektur von Fehlsichtigkeiten weiterentwickelt und verbessert worden. Dennoch muss ein Teil der Patienten nachkorrigiert werden, u. a. wegen residualer Refraktionsfehler. Darüber soll im Folgenden berichtet werden.

Abstract

This review article focusses on the management of enhancements after corneal refractive laser surgery. Fundamental issues regarding enhancement embrace identification of the underlying reason for postoperative ametropia, assurance of stability of refraction, type of primary refractive laser treatment and thorough evaluation of the given anatomical parameters of the cornea. With respect to specific inclusion and exclusion criteria, different surgical options for enhancement strategies are displayed with their particular advantages and disadvantages including preoperative planning of the according laser parameters and postoperative patient management.

Kernaussagen

Da es auch bei optimaler präoperativer Diagnostik, sorgfältiger Behandlungsplanung, komplikationsloser Chirurgie und problemlosem postoperativen Verlauf bei allen Laserverfahren weiterhin immer zu Nachkorrekturen kommen kann, sollte a priori bei Erstindikationsstellung diese Konstellation immer eingeplant werden. Grundlage für eine Nachbehandlung ist neben einer ausreichenden kornealen Stromadicke die Identifikation der Ursache der residualen Ametropie und eine Stabilität der Werte, um auf dieser Basis gemeinsam mit dem Patienten das im individuellen Einzelfall ideale Nachkorrekturverfahren auszuwählen.

 
  • Literatur

  • 1 Chen S, Huang J, Wen D. et al. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmol 2012; 90: 449-455
  • 2 Huang J, Ding X, Savini G. et al. A comparison between Scheimpflug imaging and optical coherence tomography in measuring corneal thickness. Ophthalmology 2013; 120: 1951-1958
  • 3 Huang J, Pesudovs K, Yu A. et al. A comprehensive comparison of central corneal thickness measurement. Optom Vis Sci 2011; 88: 940-949
  • 4 Chan TC, Biswas S, Yu M, Jhanji V. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik. Medicine (Baltimore) 2015; 94: e1219
  • 5 Schallhorn JM, Tang M, Li Y. et al. Distinguishing between contact lens warpage and ectasia: Usefulness of optical coherence tomography epithelial thickness mapping. J Cataract Refract Surg 2017; 43: 60-66
  • 6 Ataş M, Duru N, Ulusoy DM. et al. Evaluation of anterior segment parameters during and after pregnancy. Cont Lens Anterior Eye 2014; 37: 447-450
  • 7 Li HY, Luo GC, Guo J, Liang Z. Effects of glycemic control on refraction in diabetic patients. Int J Ophthalmol 2010; 3: 158-160
  • 8 Mimouni M, Vainer I, Shapira Y. et al. Factors predicting the need for retreatment after laser refractive surgery. Cornea 2016; 35: 607-612
  • 9 Kim H, Joo CK. Ocular cyclotorsion according to body position and flap creation before laser in situ keratomileusis. J Cataract Refract Surg 2008; 34: 557-561
  • 10 Padmanabhan P, Mrochen M, Viswanathan D. et al. Wavefront aberrations in eyes with decentered ablations. J Cataract Refract Surg 2009; 35: 695-702
  • 11 Reinstein DZ, Gobbe M, Archer TJ. Coaxially sighted corneal light reflex versus entrance pupil center centration of moderate to high hyperopic corneal ablations in eyes with small and large angle kappa. J Refract Surg 2013; 29: 518-525
  • 12 Okamoto S, Kimura K, Funakura M. et al. Comparison of myopic LASIK centered on the coaxially sighted corneal light reflex or line of sight. J Refract Surg 2009; 25 (10 Suppl): S944-950
  • 13 Kermani O, Oberheide U, Schmiedt K. et al. Outcomes of hyperopic LASIK with the NIDEK NAVEX platform centered on the visual axis or line of sight. J Refract Surg 2009; 25 (1 Suppl): S98-S103
  • 14 Arbelaez MC, Vidal C, Arba-Mosquera S. Clinical outcomes of corneal vertex versus central pupil references with aberration-free ablation strategies and LASIK. Invest Ophthalmol Vis Sci 2008; 49: 5287-5294
  • 15 Kim WS, Jo JM. Corneal hydration affects ablation during laser in situ keratomileusis surgery. Cornea 2001; 20: 394-397
  • 16 Dougherty PJ, Wellish KL, Maloney RK. Excimer laser ablation rate and corneal hydration. Am J Ophthalmol 1994; 118: 169-176
  • 17 Dayanir V, Sakarya R, Ozcura F. et al. Effect of corneal drying on central corneal thickness. J Glaucoma 2004; 13: 6-8
  • 18 Wirbelauer C, Aurich H, Pham DT. Online optical coherence pachymetry to evaluate intraoperative ablation parameters in LASIK. Graefes Arch Clin Exp Ophthalmol 2007; 245: 775-781
  • 19 Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg 2014; 30: 166-171
  • 20 Moller-Pedersen T, Cavanagh HD, Petroll WM. et al. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology 2000; 107: 1235-1245
  • 21 Ivarsen A, Fledelius W, Hjortdal J. Three-year changes in epithelial and stromal thickness after PRK or LASIK for high myopia. Invest Ophthalmol Vis Sci 2009; 50: 2061-2066
  • 22 Reinstein DZ, Archer TJ, Gobbe M. et al. Epithelial Thickness After Hyperopic LASIK: Three-Dimensional Display with Artemis Very High-Frequency Digital Ultrasound. J Refract Surg 2010; 26: 555-564
  • 23 Smadja D, Santhiago MR, Mello GR. et al. Response of the posterior corneal surface to myopic laser in situ keratomileusis with different ablation depths. J Cataract Refract Surg 2012; 38: 1222-1231
  • 24 The COMET Group. Myopia Stabilization and Associated Factors Among Participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci 2013; 54: 7871-7883
  • 25 Deutsche Ophthalmologische Gesellschaft (DOG), Berufsverband der Augenärzte Deutschlands e.V. (BVA). Evaluation and quality assurance of refractive surgery by the German Society of Ophthalmology and the Professional Association of German Ophthalmologists-Commission for refractive surgery recommendations: Status February 2019. Ophthalmologe 2019; 116: 735-745
  • 26 Hoffart L, Proust H, Matonti F. et al. Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy. Am J Ophthalmol 2009; 147: 779-787 787.e1
  • 27 Reinstein DZ, Archer TJ, Gobbe M. et al. Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 2008; 24: 571-581
  • 28 Cho Y, Hieda O, Wakimasu K. et al. Multiple Linear Regression Analysis of the Impact of Corneal Epithelial Thickness on Refractive Error Post Corneal Refractive Surgery. Am J Ophthalmol 2019; 207: 326-332
  • 29 Erie JC. Corneal wound healing after photorefractive keratectomy: a 3-year confocal microscopy study. Trans Am Ophthalmol Soc 2003; 101: 293-333
  • 30 Kanellopoulos AJ, Asimellis G. Longitudinal postoperative lasik epithelial thickness profile changes in correlation with degree of myopia correction. J Refract Surg 2014; 30: 166-171
  • 31 Wang J, Thomas J, Cox I. et al. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 2004; 45: 1812-1816
  • 32 Hou J, Wang Y, Lei Y. et al. Corneal Epithelial Remodeling and Its Effect on Corneal Asphericity after Transepithelial Photorefractive Keratectomy for Myopia. J Ophthalmol 2016; 2016: 8582362
  • 33 Reinstein DZ, Srivannaboon S, Gobbe M. et al. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg 2009; 25: 444-450
  • 34 Rocha KM, Krueger RR. Spectral-domain optical coherence tomography epithelial and flap thickness mapping in femtosecond laser-assisted in situ keratomileusis. Am J Ophthalmol 2014; 158: 293-301
  • 35 Chen X, Stojanovic A, Liu Y. et al. Postoperative Changes in Corneal Epithelial and Stromal Thickness Profiles After Photorefractive Keratectomy in Treatment of Myopia. J Refract Surg 2015; 31: 446-453
  • 36 Moller-Pedersen T, Cavanagh HD, Petroll WM. et al. Stromal wound healing explains refractive instability and haze development after photorefractive keratectomy: a 1-year confocal microscopic study. Ophthalmology 2000; 107: 1235-1245
  • 37 Ortega-Usobiaga J, Llovet-Osuna F, Katz T. et al. Comparison of 5468 retreatments after laser in situ keratomileusis by lifting the flap or performing photorefractive keratectomy on the flap. Arch Soc Esp Oftalmol 2018; 93: 60-68
  • 38 Von Jagow B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg 2009; 35: 35-41
  • 39 Sefat SM, Wiltfang R, Bechmann M. et al. Evaluation of changes in human corneas after femtosecond laser-assisted LASIK and Small-Incision Lenticule Extraction (SMILE) using non-contact tonometry and ultra-high-speed camera (Corvis ST). Curr Eye Res 2016; 41: 917-922
  • 40 Siedlecki J, Luft N, Kook D. et al. Enhancement after myopic Small Incision Lenticule Extraction (SMILE) Using Surface Ablation. J Refract Surg 2017; 33: 513-518
  • 41 Siedlecki J, Luft N, Mayer WJ. et al. CIRCLE Enhancement after myopic SMILE. J Refract Surg 2018; 34: 304-309
  • 42 Siedlecki J, Siedlecki M, Luft N. et al. Surface ablation versus CIRCLE for myopic enhancement after SMILE: A matched comparative study. J Refract Surg 2019; 35: 294-300