Exp Clin Endocrinol Diabetes 2020; 128(06/07): 358-374
DOI: 10.1055/a-1175-4610
Mini-Review

Mass Spectrometry-Based Determination of Thyroid Hormones and Their Metabolites in Endocrine Diagnostics and Biomedical Research – Implications for Human Serum Diagnostics

1   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany; Institut für Experimentelle Endokrinologie, Berlin, Germany
,
Keith H. Richards
1   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany; Institut für Experimentelle Endokrinologie, Berlin, Germany
2   Current address: Laboratoriumsmedizin & Toxikologie, Labor Berlin, Berlin, Germany
› Author Affiliations

Abstract

The wide spectrum of novel applications for the LC-MS/MS-based analysis of thyroid hormone metabolites (THM) in blood samples and other biological specimen highlights the perspectives of this novel technology. However, thorough development of pre-analytical sample workup and careful validation of both pre-analytics and LC-MS/MS analytics, is needed, to allow for quantitative detection of the thyronome, which spans a broad concentration range in these biological samples.

This minireview summarizes recent developments in advancing LC-MS/MS-based analytics and measurement of total concentrations of THM in blood specimen of humans, methods in part further refined in the context of previous achievements analyzing samples derived from cell-culture or tissues. Challenges and solutions to tackle efficient pre-analytic sample extraction and elimination of matrix interferences are compared. Options for automatization of pre-analytic sample-preparation and comprehensive coverage of the wide thyronome concentration range are presented. Conventional immunoassay versus LC-MS/MS-based determination of total and free THM concentrations are briefly compared.



Publication History

Received: 14 September 2019
Received: 15 April 2020

Accepted: 11 May 2020

Article published online:
16 June 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Soldin OP, Soldin SJ. Thyroid hormone testing by tandem mass spectrometry. Clin Biochem. 2011; Jan 44: 89-94
  • 2 International Federation of Clinical Chemistry; Laboratory Medicine Working Group for Standardization of Thyroid Function Tests Van Houcke SK, Van Uytfanghe K et al. IFCC international conventional reference procedure for the measurement of free thyroxine in serum: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Working Group for Standardization of Thyroid Function Tests (WG-STFT) (1). Clin Chem Lab Med 2011; 49: 1275–1281. doi: 10.1515/CCLM.2011.639. PMID: 21675941
  • 3 Kushnir MM, Rockwood AL, Bergquist J. Liquid chromatography-tandem mass spectrometry applications in endocrinology. Mass Spectrom Rev 2010; 29: 480-502
  • 4 Richards K, Rijntjes E, Rathmann D. et al. Avoiding the pitfalls when quantifying thyroid hormones and their metabolites using mass spectrometric methods: The role of quality assurance. Mol Cell Endocrinol 2017; 458: 44-56
  • 5 Soukhova N, Soldin OP, Soldin SJ. Isotope dilution tandem mass spectrometric method for T4/T3. Clin Chim Acta 2004; 343: 185-190 PubMed PMID: 15115693; PubMed Central PMCID: PMC3634919
  • 6 Gu J, Soldin OP, Soldin SJ. Simultaneous quantification of free triiodothyronine and free thyroxine by isotope dilution tandem mass spectrometry. Clin Biochem 2007; 40: 1386-1391
  • 7 Piehl S, Heberer T, Balizs G. et al. Development of a validated liquid chromatography/tandem mass spectrometry method for the distinction of thyronine and thyronamine constitutional isomers and for the identification of new deiodinase substrates. Rapid Commun Mass Spectrom 2008; 22: 3286-3296
  • 8 [8a] Bioanalytical Method Validation; Guidance for Industry (2018) http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm; [8b] Wu AH, French D. Implementation of liquid chromatography/mass spectrometry into the clinical laboratory. Clin Chim Acta 2013; 420: 4-10
  • 9 Cappiello A, Famiglini G, Palma P. et al. Overcoming Matrix Effects in Liquid Chromatography−Mass Spectrometry. Anal Chem 2008; 80: 9343-9348.
  • 10 Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis 2017; 9: 23. doi.org/10.4155/bio-2017-0214
  • 11 Van Eeckhaut A, Lanckmans K, Sarre S. et al. Validation of bioanalytical LC–MS/MS assays: evaluation of matrix effects. J Chromatogr B 2009; 877: 2198-2207
  • 12 Hansen M, Luong X, Sedlak DL. et al. Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2016; 408: 5429-5442
  • 13 Richards KH, Monk R, Renko K. et al. A combined LC-MS/MS and LC-MS(3) multi-method for the quantification of iodothyronines in human blood serum. Anal Bioanal Chem 2019; 411: 5605-5616
  • 14 Álvarez E, Madrid Y, Marazuela MD. Comparison of sample preparation strategies for target analysis of total thyroid hormones levels in serum by liquid chromatography-quadrupole time-of-flight-mass spectrometry. Talanta. 2017; 164: 570-579
  • 15 Tanoue R, Kume I, Yamamoto Y. et al. Determination of free thyroid hormones in animal serum/plasma using ultrafiltration in combination with ultra-fast liquid chromatography-tandem mass spectrometry. J Chromatogr A 2018; 1539: 30-40
  • 16 Sakai H, Nagao H, Sakurai M. et al. Correlation between Serum Levels of 3,3',5'-Triiodothyronine and Thyroid Hormones Measured by Liquid Chromatography-Tandem Mass Spectrometry and Immunoassay. PLoS One 2015; 10: e0138864
  • 17 Wang D, Stapleton HM. Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2010; Jul 397: 1831-1839
  • 18 Tai SS, Sniegoski LT, Welch MJ. Candidate reference method for total thyroxine in human serum: use of isotope-dilution liquid chromatography-mass spectrometry with electrospray ionization. Clin Chem 2002; 48: 637-642. PubMed PMID: 11901062
  • 19 Van Uytfanghe K, Stöckl D, Thienpont LM. Development of a simplified sample pretreatment procedure as part of an isotope dilution-liquid chromatography/tandem mass spectrometry candidate reference measurement procedure for serum total thyroxine. Rapid Commun Mass Spectrom 2004; 18: 1539-1540 PMID: 15216518
  • 20 Richards KH, Schanze N, Monk R. et al. A validated LC-MS/MS method for cellular thyroid hormone metabolism: Uptake and turnover of mono-iodinated thyroid hormone metabolites by PCCL3 thyrocytes. PLoS One 2017 -12 e0183482
  • 21 Li ZM, Giesert F, Vogt-Weisenhorn D et al. Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2018; Jan 26 1534: 85–92. doi: 10.1016/j.chroma.2017.12.048. PMID: 29307529 800
  • 22 Lorenzini L, Nguyen NM, Sacripanti G et al. Assay of Endogenous 3,5-diiodo-L-thyronine (3,5-T(2)) and 3,3'-diiodo-L-thyronine (3,3'-T(2)) in Human Serum: A Feasibility Study. Front Endocrinol (Lausanne) 2019; Feb 19 10: 88 . doi: 10.3389/fendo.2019.00088 eCollection 2019. PubMed PMID: 30837954; PubMed Central PMCID: PMC6389606.
  • 23 Brenton AG, Godfrey AR. Accurate mass measurement: terminology and treatment of data. J Am Soc Mass Spectrom 2010; 21: 1821-1835 PMID: 20650651
  • 24 Köhrle J. The colorful diversity of thyroid hormone metabolites. Eur Thyroid J 2019; 8: 115-129 Review. PMID: 31259154
  • 25 Kunisue T, Eguchi A, Iwata H. et al. Analysis of thyroid hormones in serum of Baikal seals and humans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunoassay methods: Application of the LC-MS/MS method to wildlife tissues. Environ Sci Technol 2011; 45: 10140-10147
  • 26 Hansen M, Villanger GD, Bechshoft T. et al. Circulating thyroid hormones and associated metabolites in white whales (Delphinapterus leucas) determined using isotope-dilution mass spectrometry. Environ Res. 2017; 156: 128-131
  • 27 Tai SS, Bunk DM, White E. et al. Development and evaluation of a reference measurement procedure for the determination of total 3,3',5-triiodothyronine in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem. 2004; 76: 5092-5096 PMID: 15373447
  • 28 Noyes PD, Lema SC, Roberts SC. et al. Rapid method for the measurement of circulating thyroid hormones in low volumes of teleost fish plasma by LC-ESI/MS/MS. Anal Bioanal Chem. Anal Bioanal Chem 2014; 406: 715-726
  • 29 Rathmann D, Rijntjes E, Lietzow J et al. Quantitative Analysis of Thyroid Hormone Metabolites in Cell Culture Samples Using LC-MS/ MS. Eur Thyroid J 2015; 4 (Suppl 1): 51–58. doi: 10.1159/000430840
  • 30 Jonklaas J, Sathasivam A, Wang H et al. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients. Clin Biochem. 2014; 47: (13-14) 1272–1278. doi: 10.1016/j.clinbiochem.2014.06.007
  • 31 Welsh KJ, Soldin SJ. DIAGNOSIS OF ENDOCRINE DISEASE: How reliable are free thyroid and total T3 hormone assays?. Eur J Endocrinol 2016; 175: R255-R263 Review. PMID: 27737898
  • 32 Bowerbank SL, Carlin MG, Dean JR. A direct comparison of liquid chromatography-mass spectrometry with clinical routine testing immunoassay methods for the detection and quantification of thyroid hormones in blood serum. Anal Bioanal Chem 2019; 411: 2839-2853
  • 33 Saba A, Donzelli R, Colligiani D. et al. Quantification of thyroxine and 3,5,3'-triiodo-thyronine in human and animal hearts by a novel liquid chromatography-tandem mass spectrometry method. Horm Metab Res 2014; 46: 628-634
  • 34 Hantson AL, De Meyer M, Guérit N. Simultaneous determination of endogenous and 13C-labelled thyroid hormones in plasma by stable isotope dilution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807: 185-192
  • 35 Chen X, Walter KM, Miller GW. et al. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr. 2018; 32: e4185
  • 36 Shackleton C, Pozo OJ, Marcos J. GC/MS in recent years has defined the normal and clinically disordered steroidome: Will it soon be surpassed by LC/Tandem MS in this role?. J Endocr Soc 2018; 2: 974-996 eCollection 2018 Aug 1
  • 37 Siekmann L. Measurement of thyroxine in human serum by isotope dilution mass spectrometry. Definitive methods in clinical chemistry, V. Biomed Environ Mass Spectrom 1987; 14: 683-688
  • 38 Thienpont LM, De Brabandere VI, Stöckl D et al. Development of a new method for the determination of thyroxine in serum based on isotope dilution gas chromatography mass spectrometry. Biol Mass Spectrom 1994; 23: 475–482. PubMed PMID: 7918690
  • 39 Janssen ST, Janssen OE. Directional thyroid hormone distribution via the blood stream to target sites. Mol Cell Endocrinol 2017; 458: 16-21
  • 40 McLean TR, Rank MM, Smooker PM. et al. Evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 2017; 459: 43-52
  • 41 Carmical J, Brown S. The impact of phospholipids and phospholipid removal on bioanalytical method performance. Biomed Chromatogr 2016; 30: 710-720
  • 42 Lorenzini L, Ghelardoni S, Saba A. et al. Recovery of 3-Iodothyronamine and Derivatives in Biological Matrixes: Problems and Pitfalls. Thyroid 2017; 27: 1323-1331
  • 43 Kunisue T, Fisher JW, Fatuyi B et al. A method for the analysis of six thyroid hormones in thyroid gland by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; Jul 1 878: 1725–1730. doi: 10.1016/j.jchromb.2010.04.031 PMID: 20466602
  • 44 GROSS J, PITT-RIVERS R. 3:5:3' -triiodothyronine. 1. Isolation from thyroid gland and synthesis. Biochem J 1953; 53: 645-650. PMID: 13032123
  • 45 Flock EV, Bollman JL. The metabolism of thyroxine and triiodothyronine in the eviscerated rat. J Biol Chem 1955; 214: 709-721
  • 46 Ackermans MT, Kettelarij-Haas Y, Boelen A. et al. Determination of thyroid hormones and their metabolites in tissue using SPE UPLC-tandem MS. Biomed Chromatogr 2012; 26: 485-490
  • 47 Gilbert-López B, García-Reyes JF, Molina-Díaz A. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta. 2009; 79: 109-128
  • 48 Lawal A, Wong RCS, Tan GH. et al. Recent Modifications and Validation of QuEChERS-dSPE Coupled to LC-MS and GC-MS Instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review. J Chromatogr Sci 2018; 56: 656-669
  • 49 Lega F, Contiero L, Biancotto G. et al. Determination of thyreostats in muscle and thyroid tissues by QuEChERS extraction and ultra-performance liquid chromatography tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30: 949-957
  • 50 Donzelli R, Colligiani D, Kusmic C. et al. Effect of hypothyroidism and hyperthyroidism on tissue thyroid hormone concentrations in rat. Eur Thyroid J. 2016; 5: 27-34
  • 51 De Angelis M, Giesert F, Finan B et al. Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method. J Chromatogr B Analyt Technol Biomed Life Sci. 2016; 1033-1034 413–420. doi: 10.1016/j. jchromb.2016.08.037. PMID: 27649501
  • 52 Li ZM, Hernandez-Moreno D, Main KM. et al. Association of In Utero Persistent Organic Pollutant Exposure With Placental Thyroid Hormones. Endocrinology. 2018; 159: 3473-3481
  • 53 Nishimura K, Takeda M, Yamashita JK. et al. Type 3 iodothyronine deiodinase is expressed in human induced pluripotent stem cell derived cardiomyocytes. Life Sci. 2018; 203: 276-281
  • 54 Goto-Inoue N, Sato T, Morisasa M. et al. Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles. Anal Bioanal Chem 2018; 410: 1333-1340
  • 55 Taylor E, Heyland A. Evolution of thyroid hormone signaling in animals: Non-genomic and genomic modes of action. Mol Cell Endocrinol 2017; 459: 14-20
  • 56 Holzer G, Roux N, Laudet V. Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Mol Cell Endocrinol 2017; 459: 5-13
  • 57 Paris M, Escriva H, Schubert M. et al. Amphioxus postembryonic development reveals the homology of chordate metamorphosis. Curr Biol. 2008; 18: 825-830
  • 58 Orozco A, Lazcano I, Hernández-Puga G. et al. Non-mammalian models reveal the role of alternative ligands for thyroid hormone receptors. Mol Cell Endocrinol 2017; 459: 59-63
  • 59 Berg T, Karlsen M, Oiestad AM. et al. Evaluation of ¹³C- and ²H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2014; 1344: 83-90
  • 60 Takeda K, Mori Y, Sobieszczyk S. et al. Sequence of the variant thyroxine-binding globulin of Australian aborigines. Only one of two amino acid replacements is responsible for its altered properties. J Clin Invest 1989; 83: 1344-1348
  • 61 Vranckx R, Rouaze-Romet M, Savu L. et al. Regulation of rat thyroxine-binding globulin and transthyretin: studies in thyroidectomized and hypophysectomized rats given tri-iodothyronine or/and growth hormone. J Endocrinol 1994; 142: 77-84
  • 62 Kiebooms JA, Wauters J, Vanden Bussche J. et al. Validated ultra high performance liquid chromatography-tandem mass spectrometry method for quantitative analysis of total and free thyroid hormones in bovine serum. J Chromatogr A 2014; 1345: 164-173
  • 63 Eales JG. The relationship between ingested thyroid hormones, thyroid homeostasis and iodine metabolism in humans and teleost fish. Gen Comp Endocrinol 2019; 280: 62-72
  • 64 Favresse J, Burlacu MC, Maiter D. et al. Interferences with thyroid function immunoassays: Clinical implications and detection algorithm. Endocr Rev 2018; 39: 830-850
  • 65 Mendel CM. The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 1989; 10: 232-274 Review. PMID: 2673754
  • 66 Führer D, Brix K, Biebermann H. Understanding the Healthy Thyroid State in 2015. Eur Thyroid J 2015; 4 (Suppl 1) 1-8
  • 67 Peeters RP, Wouters PJ, van Toor H. et al. Serum 3,3',5'-triiodothyronine (rT3) and 3,5,3'-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab 2005; 90: 4559-4565
  • 68 van Deventer HE, Mendu DR, Remaley AT. et al. Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem. 2011; 57: 122-127
  • 69 Bingfang Y, Rockwod AL, Sandrock T. et al. Free thyroid hormones in serum by direct dialysis and online solid-phase extraction–liquid chromatography/tandem mass spectrometry. Clinical Chemistry 2008; 54: 642-651
  • 70 Yu S, Zhou W, Cheng X. et al. Comparison of six automated immunoassays with isotope-diluted liquid chromatography-tandem mass spectrometry for total thyroxine measurement. Ann Lab Med 2019; 39: 381-387
  • 71 Masika LS, Zhao Z, Soldin SJ. Is measurement of TT3 by immunoassay reliable at low concentrations? A comparison of the Roche Cobas 6000 vs. LC-MSMS. Clin Biochem. 2016; 49: 846-849
  • 72 Kushchayeva Y, Soldin SJ, Stolze B. et al. Comparison of thyroid panel by immunoassay and liquid chromatography-tandem mass spectrometry during transition from euthyroid to hyperthyroid state annals. Thyroid Res 2019; 5: 178-184
  • 73 Montanelli L, Benvenga S, Hegedüs L et al. Drugs and other substances interfering with thyroid function. In: Vitti P, Hegedüs L Eds. Thyroid Diseases. Endocrinology. 2018 Springer; Cham
  • 74 Gomes-Lima C, Burman KD. Reverse T3 or perverse T3? Still puzzling after 40 years. Cleve Clin J Med 2018; 85: 450-455
  • 75 Lin HY, Mousa SA, Davis PJ. Demonstration of the Receptor Site for Thyroid Hormone on Integrin alphavbeta3. Methods Mol Biol 2018; 1801: 61-65
  • 76 Schmohl KA, Müller AM, Wechselberger A. et al. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr Relat Cancer 2015; 22: 941-952
  • 77 Groeneweg S, Peeters RP, Visser TJ. et al. Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Mol Cell Endocrinol 2017; 458: 82-90
  • 78 Groeneweg S, Peeters RP, Moran C. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol 2019; 7: 695-706
  • 79 Huang SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid.. 2005; 15: 875–881 Review. PMID: 16131330
  • 80 Wiersinga WM. Therapy of endocrine disease: T4+++T3 combination therapy: Is there a true effect?. Eur J Endocrinol 2017; 177: R287-R296
  • 81 McAninch EA, Bianco AC. The Swinging Pendulum in Treatment for Hypothyroidism: From (and Toward?) Combination Therapy. Front Endocrinol (Lausanne) 2019; 10: 446
  • 82 Da Conceição RR, Fernandes GW, Fonseca TL. et al. Metal Coordinated Poly-Zinc-Liothyronine Provides Stable Circulating Triiodothyronine Levels in Hypothyroid Rats. Thyroid. 2018; 28: 1425-1433
  • 83 von Heppe JH, Krude H, L'Allemand D. et al. The use of L-T4 as liquid solution improves the practicability and individualized dosage in newborns and infants with congenital hypothyroidism. J Pediatr Endocrinol Metab 2004; 17: 967-974
  • 84 Laurent I, Tang S, Astère M. et al. Liquid L-thyroxine versus tablet L-thyroxine in patients on L- thyroxine replacement or suppressive therapy: a meta-analysis. Endocrine. 2018; 61: 28-35
  • 85 Neu V, Bielow C, Gostomski et al. Rapid and comprehensive impurity profiling of synthetic thyroxine by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Anal Chem 2013; 85: 3309–3317. doi: 10.1021/ac303722j. PMID: 23394260
  • 86 Ross, DS. Exogenous hyperthyroidism. UpToDate, Aug. 2019 https://www.uptodate.com/contents/exogenous-hyperthyroidism
  • 87 D'Arcy R, McDonnell M, Spence K et al. Exogenous T3 toxicosis following consumption of a contaminated weight loss supplement. Endocrinol Diabetes Metab Case Rep. 2017; 2017: pii: 17-0087. doi: 10.1530/EDM-17-0087 eCollection 2017
  • 88 Broome MR, Peterson ME, Kemppainen RJ. et al. Exogenous thyrotoxicosis in dogs attributable to consumption of all-meat commercial dog food or treats containing excessive thyroid hormone: 14 cases (2008-2013). J Am Vet Med Assoc 2015; 246: 105-111
  • 89 https://www.fda.gov/animal-veterinary/news-events/fda-alerts-pet-owners-about-presence-thyroid-hormones-certain-milos-kitchen-pet-treats
  • 90 Thienpont LM, Van Uytfanghe K, Marriot J. et al. Metrologic traceability of total thyroxine measurements in human serum: efforts to establish a network of reference measurement laboratories. Clin Chem 2005; 51: 161-168
  • 91 Beekhuijzen M, Schneider S, Barraclough N. et al. The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies. Reprod Toxicol 2018; 80: 126-130
  • 92 Bielohuby M, Popp S, Bidlingmaier M. A guide for measurement of circulating metabolic hormones in rodents: Pitfalls during the pre-analytical phase. Mol Metab 2012; 1 (1-2) 47-60
  • 93 Jonklaas J, Razvi S. Reference intervals in the diagnosis of thyroid dysfunction: Treating patients not numbers. Lancet Diabetes Endocrinol 2019; 7: 473-483
  • 94 Chace DH, Singleton S, Diperna J. et al. Rapid metabolic and newborn screening of thyroxine (T4) from dried blood spots by MS/MS. Clin Chim Acta 2009; 403: 178-183
  • 95 Domenech-Coca C, Mariné-Casadó R, Caimari A. et al. Dual liquid-liquid extraction followed by LC-MS/MS method for the simultaneous quantification of melatonin, cortisol, triiodothyronine, thyroxine and testosterone levels in serum: Applications to a photoperiod study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1108: 11-16
  • 96 Gozet T, Serdar M, Akın-Levi C. et al. Assessment of thyroid function during postpartum period with total thyroxine and total triiodothyronine levels measured by LC-MS/MS. Journal of Liquid Chromatography & Related Technologies 2018; 41: 704
  • 97 Ruuskanen S, Hsu BY, Heinonen A et al. A new method for measuring thyroid hormones using nano-LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2018; 1093-1094 24–30. doi: 10.1016/j. jchromb.2018.06.052
  • 98 Laslo M, Denver RJ, Hanken J. Evolutionary conservation of thyroid hormone receptor and deiodinase expression dynamics in ovo in a direct-developing frog, eleutherodactylus coqui. Front Endocrinol (Lausanne) 2019; 10: 307. doi: 10.3389/fendo.2019.00307 eCollection 2019. PMID: 31178826
  • 99 Saba A, Chiellini G, Frascarelli S. et al. Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology. 2010; 151: 5063-5073
  • 100 Higashi T, Ichikawa T, Shimizu C et al. Stable isotope-dilution liquid chromatography/tandem mass spectrometry method for determination of thyroxine in saliva. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879: (13-14) 1013–1017. doi: 10.1016/j. jchromb.2011.02.048
  • 101 Fan W, Mao X, He M. et al. Stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet/inductively coupled plasma mass spectrometry for analysis of thyroxine in urine samples. J Chromatogr A 2013; 1318: 49-57