Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(14): 2469-2476
DOI: 10.1055/a-1396-8198
DOI: 10.1055/a-1396-8198
paper
Synthesis of Multibromo-Substituted Quinolines by NBS-Mediated Cascade Electrophilic Bromination/Cyclization of N-(3-Phenylprop-2-ynyl)anilines
We acknowledge the National Natural Science Foundation of China (No. 21676131, No. 21462019, and No. 22001101), the Natural Science Foundation of Jiangxi Province (20181BAB203005 and 20143ACB20012), and the Education Department of Jiangxi Province (GJJ180616) for financial support.

Abstract
A new and convenient protocol is presented here for the synthesis of 3,6,8-tribromoquinolines via cascade cyclization of N-(3-phenylprop-2-ynyl)anilines employing N-bromosuccinimide as an electrophile. The metal-free process is carried out under mild conditions and is compatible with a variety of substituents. The Sonogashira coupling reaction regioselectively occurs at position C-6 of the obtained products.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1396-8198.
- Supporting Information
Publication History
Received: 12 January 2021
Accepted after revision: 22 February 2021
Accepted Manuscript online:
22 February 2021
Article published online:
29 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Singh S, Kaur G, Mangla V, Gupta MK. J. Enzyme Inhib. Med. Chem. 2015; 30: 492
- 1b Hussaini SM. A. Expert Opin. Ther. Pat. 2016; 26: 1201
- 1c Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Alam MM. Saudi Pharm. J. 2013; 21: 1
- 1d Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
- 2a Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 2b Michael JP. Nat. Prod. Rep. 2007; 24: 223
- 2c Michael JP. Nat. Prod. Rep. 2003; 20: 476
- 3a Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Eur. J. Med. Chem. 2019; 164: 121
- 3b Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
- 3c Chung PY, Bian ZX, Pun HY, Chan D, Chan AS. C, Chui CH, Tang JC. O, Lam KH. Future Med. Chem. 2015; 7: 947
- 4a Ramann GA, Cowen BJ. Molecules 2016; 21: 986
- 4b Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
- 5a Rehan M, Hazra G, Ghorai P. Org. Lett. 2015; 17: 1668
- 5b Ryabukhin SV, Naumchik VS, Plaskon AS, Grygorenko OO, Tolmachev AA. J. Org. Chem. 2011; 76: 5774
- 6 Ökten S, Çakmak O, Erenler R, Yüce Ö, Tekin Ş. Turk. J. Chem. 2013; 37: 896
- 7 Sahin A, Çakmak O, Demirtas I, Ökten S, Tutar A. Tetrahedron 2008; 64: 1006
- 8a Theoclitou M.-E, Robinson LA. Tetrahedron Lett. 2002; 43: 3907
- 8b Badger G, Crocker H, Ennis B, Gayler J. Aust. J. Chem. 1963; 16: 814
- 8c Long R, Schofield K. J. Chem. Soc. 1953; 3161
- 8d Leonova T, Nadeyskaya E, Yashunskii V. Pharm. Chem. J. 1987; 21: 430
- 8e Calaway PK, Henze HR. J. Am. Chem. Soc. 1939; 61: 1355
- 8f Camps R. Ber. Dtsch. Chem. Ges. 1899; 32: 3228
- 8g Friedlaender P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
- 9a Song X.-R, Li R, Ding H, Chen X, Yang T, Bai J, Xiao Q, Liang YM. Org. Chem. Front. 2018; 5: 1537
- 9b Jin F, Yang T, Song X.-R, Bai J, Yang R, Ding H, Xiao Q. Molecules 2019; 24: 3999
- 9c Song X.-R, Yang R, Xiao Q. Adv. Synth. Catal. 2021; 363: 852
- 10a Peshkov VA, Pereshivko OP, Nechaev AA, Peshkov AA, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3861
- 10b Costello JP, Ferreira EM. Org. Lett. 2019; 21: 9934
- 10c Xie J, Guo Z, Huang Y, Qu Y, Song H, Liu Y, Wang Q. Adv. Synth. Catal. 2019; 361: 490
- 10d Huo Z, Gridnev ID, Yamamoto Y. J. Org. Chem. 2010; 75: 1266
- 10e Likhar PR, Subhas MS, Roy S, Kantam ML, Sridhar B, Seth RK, Biswas S. Org. Biomol. Chem. 2009; 7: 85
- 10f Zhang Y, Liu X.-K, Wu Z.-G, Wang Y, Pan Y. Org. Biomol. Chem. 2017; 15: 6901
- 11a Zhang X, Yao T, Campo MA, Larock RC. Tetrahedron 2010; 66: 1177
- 11b Zhang X, Campo MA, Yao T, Larock RC. Org. Lett. 2005; 7: 763
- 11c Yue D, Della Cà N, Larock RC. Org. Lett. 2004; 6: 1581
- 12a Feng S, Li J, Liu Z, Sun H, Shi H, Wang X, Xie X, She X. Org. Biomol. Chem. 2017; 15: 8820
- 12b Zheng D, Yu J, Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
- 12c Barluenga J, Vázquez-Villa H, Ballesteros A, González JM. J. Am. Chem. Soc. 2003; 125: 9028
- 12d Arcadi A, Cacchi S, Di Giuseppe S, Fabrizi G, Marinelli F. Org. Lett. 2002; 4: 2409
- 13a Navakouski M, Zhylitskaya H, Chmielewski PJ, Żyła-Karwowska M, Stępień M. J. Org. Chem. 2020; 85: 187
- 13b Natho P, Allen LA. T, White AJ. P, Parsons PJ. J. Org. Chem. 2019; 84: 9611
- 13c Yang T, Wang W, Wei D, Zhang T, Han B, Yu W. Org. Chem. Front. 2017; 4: 421
- 13d Wang AF, Zhu YL, Wang SL, Hao WJ, Li G, Tu SJ, Jiang B. J. Org. Chem. 2016; 81: 1099
- 13e Zhang N, Yang R, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2013; 78: 8705
- 13f Zhao Y, Wong YC, Yeung YY. J. Org. Chem. 2015; 80: 453
- 14 CCDC 2048602 (2a), CCDC 2048406 (2u) and CCDC 2048600 (4) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For selected reviews on pharmaceutical applications of quinolines, see:
For selected reviews on quinoline synthetic progress, see:
Selected references on the construction of N-heterocycles:
Selected references on Larock’s work:
Selected references on the construction of O-heterocycles: