Synthesis 2021; 53(18): 3397-3403 DOI: 10.1055/a-1509-5954
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Nickel-Catalyzed Homocoupling of Aryl Ethers with Magnesium Anthracene Reductant
Vishal Kumar Rawat
b
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
,
Kosuke Higashida∗
a
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
b
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
,
a
Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
b
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
› Author Affiliations This work was supported by JSPS KAKENHI (JP20K15268) in Grant-in-Aid for Young Scientists to K.H. and JP18H03906 in Grant-in-Aid for Scientific Research (A) to M.S. JICA is thanked for providing a scholarship to V.K.R. under the FRIENDSHIP project.
Abstract
Nickel-catalyzed reductive homocoupling of aryl ethers has been achieved with Mg(anthracene)(thf)3 as a readily available low-cost reductant. DFT calculations provided a rationale for the specific efficiency of the diorganomagnesium-type two-electron reducing agent. The calculations show that the dianionic anthracene-9,10-diyl ligand reduces the two aryl ether substrates, resulting in the homocoupling reaction through supply of electrons to the Ni-Mg bimetallic system to form organomagnesium nickel(0)-ate complexes, which cause two sequential C–O bond cleavage reactions. The calculations also showed cooperative actions of Lewis acidic magnesium atoms and electron-rich nickel atoms in the C–O cleavage reactions.
Key words
homocoupling -
C–O bond activation -
nickel catalyst -
magnesium anthracene -
DFT calculation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1509-5954.
Supporting Information
Publication History
Received: 24 April 2021
Accepted after revision: 17 May 2021
Accepted Manuscript online: 17 May 2021
Article published online: 15 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Vasconcelos SN. S,
Reis JS,
de Oliveira IM,
Balfour MN,
Stefani HA.
Tetrahedron 2019; 75: 1865
1b
Hassan J,
Sévignon M,
Gozzi C,
Schulz E,
Lemaire M.
Chem. Rev. 2002; 102: 1359
2a
Ullmann F,
Bielecki J.
Ber. Dtsch. Chem. Ges. 1901; 34: 2174
2b
Ullmann F,
Meyer GM,
Loewenthal O,
Gilli E.
Justus Liebigs Ann. Chem. 1904; 332: 38
Recent reports on nickel-catalyzed homocoupling reactions:
3a
Qiu H,
Shuai B,
Wang Y.-Z,
Liu D,
Chen Y.-G,
Gao P.-S,
Ma H.-X,
Chen S,
Mei T.-S.
J. Am. Chem. Soc. 2020; 142: 9872
3b
Rahil R,
Sengmany S,
Gall EL,
Léonel E.
Synthesis 2018; 50: 146
3c
Lv L,
Qiu Z,
Li J,
Liu M,
Li C.-J.
Nat. Commun. 2018; 9: 4739
3d
Liu Y,
Xiao S,
Qi Y,
Du F.
Chem. Asian J. 2017; 12: 673
3e
Guo L,
Huang C,
Liu L,
Shao Z,
Tong Y,
Hou H,
Fan Y.
Cryst. Growth Des. 2016; 16: 4926
3f
Maddaluno J,
Durandetti M.
Synlett 2015; 26: 2385
3g
Yamamoto T.
Appl. Organomet. Chem. 2014; 28: 598
Recent reports on palladium-catalyzed homocoupling reactions:
4a
Schroeter F,
Lerch S,
Strassner T.
Org. Process Res. Dev. 2018; 22: 1614
4b
Lakshmidevi J,
Appa RM,
Naidu BR,
Prasad SS,
Sarma LS,
Venkateswarlu K.
Chem. Commun. 2018; 54: 12333
4c
Zhong S,
Chen M,
Liu G,
Sun C,
Liu W.
Appl. Organomet. Chem. 2017; 31: e3705
4d
Huang Y,
Liu L,
Feng W.
ChemistrySelect 2016; 3: 630
5
Nakamura K,
Tobisu M,
Chatani N.
Org. Lett. 2015; 17: 6142
6a
Tobisu M,
Chatani N.
Acc. Chem. Res. 2015; 48: 1717
6b
Zeng H,
Qiu Z,
Domínguez-Huerta A,
Hearne Z,
Chen Z,
Li C.-J.
ACS Catal. 2017; 7: 510
6c
Qiu Z,
Li C.-J.
Chem. Rev. 2020; 120: 10454
7a
Yu D.-G,
Li B.-J,
Zheng S.-F,
Guan B.-T,
Wang B.-Q,
Shi Z.-J.
Angew. Chem. Int. Ed. 2010; 49: 4566
7b
Sergeev AG,
Hartwig JF.
Science 2011; 332: 439
7c
Liu X,
Hsiao C.-C,
Kalvet I,
Leiendecker M,
Guo L,
Schoenebeck F,
Rueping N.
Angew. Chem. Int. Ed. 2016; 55: 6093
7d
Yang Z.-K,
Wang D.-Y,
Minami H,
Ogawa H,
Ozaki T,
Saito T,
Miyamoto K,
Wang C,
Uchiyama M.
Chem. Eur. J. 2016; 22: 15693
7e
Kelley P,
Edouard GA,
Lin S,
Agapie T.
Chem. Eur. J. 2016; 22: 17173
The chemical structure of 1 was discussed:
8a
Bogdanović B,
Liao S,
Mynott R,
Schlichte K,
Westeppe U.
Chem. Ber. 1984; 117: 1378
8b
Engelhardt LM,
Harvey S,
Raston CL,
White AH.
J. Organomet. Chem. 1988; 341: 39
For a variety of chemical properties of 1 , see:
9a
Bogdanović B.
Acc. Chem. Res. 1988; 21: 261
9b
Bogdanović B,
Janke N,
Kinzelmann H.-G.
Chem. Ber. 1990; 123: 1507
For reducing ability of 1 toward organic compounds, see:
10a
Bogdanovíc B,
Schlichte K,
Westeppe U.
Chem. Ber. 1988; 121: 27
10b
Raston CL,
Salem G.
J. Chem. Soc., Chem. Commun. 1984; 1702
10c
Harvey S,
Junk PC,
Raston CL,
Salem G.
J. Org. Chem. 1988; 53: 3134
10d
Velian A,
Cummins CC.
J. Am. Chem. Soc. 2012; 134: 13978
For reducing ability of 1 toward metal reagents, see:
11a
Bönnemann H,
Bogdanović B,
Brinkmann R,
He D.-W,
Spliethoff B.
Angew. Chem., Int. Ed. Engl. 1983; 22: 728
11b
Scholz J,
Thiele K.-H.
J. Organomet. Chem. 1986; 314: 7
11c
Stanger A,
Vollhardt KP. C.
Organometallics 1992; 11: 317
11d
Aleandri LE,
Bogdanović B,
Dürr C,
Huckett SC,
Jones DJ,
Kolb U,
Lagarden M,
Rozière J,
Wilczok U.
Chem. Eur. J. 1997; 3: 1710
11e
Hatnean JA,
Beck R,
Borrelli JD,
Johnson SA.
Organometallics 2010; 29: 6077
12 For a large-scale preparation of 1 , see:
Transue WJ,
Velian A,
Nava M,
García-Iriepa C,
Temprado M,
Cummins CC.
J. Am. Chem. Soc. 2017; 139: 10822
13 The ligand exchange between an acetylacetonate ligand and an η3 -anthracenyl ligand in the reaction of [Ni(acac)Cp*] with 1 was reported. Thus, the low catalytic activity of Ni(acac)2 pre-catalyst may be due to the formation of such nickel anthracene complexes, see:
Schneider JJ,
Wolf D,
Denninger U,
Goddard R,
Krüger C.
J. Organomet. Chem. 1999; 579: 139
14a
Cornella J,
Gómez-Bengoa E,
Martin R.
J. Am. Chem. Soc. 2013; 135: 1997
14b
Schwarzer MC,
Konno R,
Hojo T,
Ohtsuki A,
Nakamura K,
Yasutomo A,
Takahashi H,
Shimasaki T,
Tobisu M,
Chatani N,
Mori S.
J. Am. Chem. Soc. 2017; 139: 10347
14c
Uthayopas C,
Surawatanawong P.
Dalton Trans. 2019; 7817
15 The first report of Kumada–Tamao–Corriu-type coupling of aryl ethers;
Wenkert E,
Michelotti EL,
Swindell CS.
J. Am. Chem. Soc. 1979; 101: 2246
Recent reports of Kumada–Tamao–Corriu-type coupling of aryl ethers:
16a
Ambre R,
Yang H,
Chen W.-C,
Yap GP. A,
Jurca T,
Ong T.-G.
Eur. J. Inorg. Chem. 2019; 3511
16b
Ghorai D,
Loup J,
Zanoni G,
Ackermann L.
Synlett 2019; 30: 429
16c
Yang Z.-K,
Xu N.-X,
Takita R,
Muranaka A,
Wang C,
Uchiyama M.
Nat. Commun. 2018; 9: 1587
16d
Wang T.-H,
Ambre R,
Wang Q,
Lee W.-C,
Wang P.-C,
Liu Y,
Zhao L,
Ong T.-G.
ACS Catal. 2018; 8: 11368
16e
Harkness GJ,
Clarke ML.
Catal. Sci. Technol. 2018; 8: 328
17a
Ogawa H,
Minami H,
Ozaki T,
Komagawa S,
Wang C,
Uchiyama M.
Chem. Eur. J. 2015; 21: 13904
17b
Kojima K,
Yang Z.-K,
Wang C,
Uchiyama M.
Chem. Pharm. Bull. 2017; 65: 862
18 Details of the calculations are described in the Supporting Information
19
Huang K.-L,
Zou J.-H,
Liu J.-Z,
Jin G,
Li J.-B,
Yao S.-L,
Peng J.-B,
Cao Y,
Zhu X.-H.
Org. Electron. 2018; 58: 139