Dtsch Med Wochenschr 2022; 147(19): 1286-1295
DOI: 10.1055/a-1516-2661
Übersicht

Triglyzeride – Aktuelle Bewertung als Risikomarker und Therapieziele

Triglycerides – assessment as risk factor and therapeutic goals
Martin Merkel
,
Dirk Müller-Wieland
,
Ulrich Laufs
,
Klaus G. Parhofer

Erhöhte Triglyzeride und mit ihnen assoziierte lipidologische Veränderungen – kleine dichte LDL, Restpartikel (Remnants), erniedrigtes HDL-Cholesterin – sind ein wichtiger, unabhängiger kardiovaskuläre Risikofaktor. Insbesondere bei Diabetes mellitus wird die Hypertriglyzeridämie als wesentliche Ursache der hohen kardiovaskulären Morbidität und Letalität angesehen. Sehr hohe Triglyzeridspiegel können eine akute Pankreatitis verursachen. Dieser Artikel gibt eine Übersicht über den aktuellen wissenschaftlichen Stand von Pathogenese und klinischer Bedeutung der Hypertriglyzeridämien.

Abstract

Elevated triglycerides and their lipidological consequences (small, dense LDL, residual particles (remnants), reduced HDL cholesterol) are an important and independent cardiovascular risk factor. Particularly in diabetes mellitus, hypertriglyceridemia is regarded as the main cause of high cardiovascular morbidity and mortality; very high triglyceride levels can cause acute pancreatitis. This article provides an overview of the current scientific status of the pathogenesis and clinical significance of hypertriglyceridemia.



Publication History

Article published online:
20 September 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3: 213-219
  • 2 Laufs U, Parhofer KG, Ginsberg HN. et al. Clinical review on triglycerides. Eur Heart J 2020; 41: 99-109c
  • 3 Deutsche Diabetes Gesellschaft (DDG) und diabetesDE – Deutsche Diabetes-Hilfe. Deutscher Gesundheitsbericht Diabetes 2019. Im Internet (Stand: 12.07.2022): https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/06_Gesundheitspolitik/03_Veroeffentlichungen/05_Gesundheitsbericht/gesundheitsbericht_2019.pdf
  • 4 Ginsberg HN, Packard CJ, Chapman MJ. et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42: 4791-4806
  • 5 Müller-Wieland D, Merkel M, Verket M. et al. [Pathophysiological principles of dyslipoproteinaemia]. Dtsch Med Wochenschr 2021; 146: e103-e111
  • 6 Teslovich TM, Musunuru K, Smith AV. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010; 466: 707-713
  • 7 Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res 2011; 52: 189-206
  • 8 Moulin P, Dufour R, Averna M. et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis 2018; 275: 265-272
  • 9 Kaltoft M, Langsted A, Nordestgaard BG. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur Heart J 2020; 41: 2288-2299
  • 10 Langsted A, Freiberg JJ, Tybjaerg-Hansen A. et al. Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med 2011; 270: 65-75
  • 11 Schunkert H, Konig IR, Kathiresan S. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43: 333-338
  • 12 Varbo A, Nordestgaard BG. Remnant cholesterol and risk of ischemic stroke in 112512 individuals from the general population. Ann Neurol 2019; 85: 550-559
  • 13 Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res 2016; 118: 547-563
  • 14 Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting Mild-to-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis. JAMA Intern Med 2016; 176: 1834-1842
  • 15 Gaudet D, Blom D, Bruckert E. et al. Acute pancreatitis is highly prevalent and complications can be fatal in patients with familial chylomicronemia: Results from a survey of lipidologist. J Clin Lipidol 2016; 10: 680-681
  • 16 Mach F, Baigent C, Catapano AL. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2019; 41: 111-88
  • 17 Bruckert E, Labreuche J, Deplanque D. et al. Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis. J Cardiovasc Pharmacol 2011; 57: 267-272
  • 18 Aung T, Halsey J, Kromhout D. et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77917 Individuals. JAMA Cardiol 2018; 3: 225-234
  • 19 Nicholls SJ, Lincoff AM, Garcia M. et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020; 324: 2268-2280
  • 20 Nissen SE, Lincoff AM, Wolski K. et al. Association Between Achieved omega-3 Fatty Acid Levels and Major Adverse Cardiovascular Outcomes in Patients With High Cardiovascular Risk: A Secondary Analysis of the STRENGTH Trial. JAMA Cardiol 2021; 6: 1-8
  • 21 Yokoyama M, Origasa H, Matsuzaki M. et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 2007; 369: 1090-1098
  • 22 Bhatt DL, Steg PG, Miller M. et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med 2019; 380: 11-22
  • 23 Patel PN, Patel SM, Bhatt DL. Cardiovascular risk reduction with icosapent ethyl. Curr Opin Cardiol 2019; 34: 721-727
  • 24 Mason RP, Libby P, Bhatt DL. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler Thromb Vasc Biol 2020; 40: 1135-1147
  • 25 FDA. FDA Briefing Document. Endocrinologic and Metabolic Drugs Advisory Committee Meeting November 14, 2019. Im Internet (Stand: 12.07.2022): www.fda.gov/media/132477/download
  • 26 Doi T, Langsted A, Nordestgaard BG. Mineral oil and icosapent ethyl may jointly explain the between arm difference of cardiovascular risk in REDUCE-IT. Eur Heart J 2021; 42: 4867-4868
  • 27 Witztum JL, Gaudet D, Freedman SD. et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med 2019; 381: 531-542